Equivariant Bordism of 2-torus Manifolds and Unitary Toric Manifolds

Bo Chen, Z. Lü and Q. Tan

March 23-25, 2022

Outline

(1) Introduction
(2) Equivariant bordism of 2-torus manifolds
(3) Equivariant bordism of unitary toric manifolds

4 Toric topology construction in bordism classes

Outline

(1) Introduction

(2) Equivariant bordism of 2 -torus manifolds

(3) Equivariant bordism of unitary toric manifolds

(4) Toric topology construction in bordism classes

Notations and Definitions

- All the group actions are assumed to be effective here.
- 2-torus manifold M^{n} : a smooth closed n-dimensional manifold equipped with an effective smooth \mathbb{Z}_{2}^{n}-action.
- unitary toric manifold $M^{2 n}$: an oriented closed smooth manifold $M^{2 n}$ with an effective T^{n}-action such that its tangent bundle $T M$ admits a T^{n}-equivariant stable complex structure, and the fixed point set $M^{T^{n}}$ is nonempty
- A (oriented) G-manifold M is said to be G-equivariant bord if there is a compact (oriented) G-manifold W, such that ∂W is invariant under the G-action and $\partial W \cong M$ as (oriented) G-manifolds.
- Two (oriented) G-manifolds M and N are G-equivariant bordant if $M \bigcup N(M \bigcup-N)$ is G-equivariant bords.

Equivarint Bordism Classification

- G : a compact Lie group
- $\Omega_{n}(G)$: the set of (unoriented, orientable, unitary, etc.) G-equivariant bordism classes of n-dimensional G-manifolds.
- $\Omega_{n}(G)$ forms an abelian group under the disjoint union.
- $\Omega_{*}(G)=\sum_{n=0}^{\infty} \Omega_{n}(G)$ forms a graded ring under the cartesian product of manifolds and diagonal G-action.

Quite Hard Problem

Determine $\Omega_{n}(G)$ and $\Omega_{*}(G)$.

Equivariant bordisms of 2-torus and unitary toric manifolds

- $\mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right)$: the equivariant bordism groups of 2-torus manifolds
- $\mathcal{Z}_{n}^{U}\left(T^{n}\right)$: the equivariant bordism groups of unitary toric manifolds
- $X\left(\mathbb{Z}_{2}^{n}\right)$ and $X\left(\mathbb{Z}^{n}\right)$: the universal complex of \mathbb{Z}_{2}^{n} and \mathbb{Z}^{n}, resp..

In this talk, it'll be shown that

Our Result

$$
\begin{aligned}
& \mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right) \cong H_{n-1}\left(X\left(\mathbb{Z}_{2}^{n}\right), \mathbb{Z}_{2}\right) \\
& \mathcal{Z}_{n}^{U}\left(T^{n}\right) \cong H_{n-1}\left(X\left(\mathbb{Z}^{n}\right), \mathbb{Z}\right)
\end{aligned}
$$

Outline

(1) Introduction
(2) Equivariant bordism of 2 -torus manifolds

(3) Equivariant bordism of unitary toric manifolds

(4) Toric topology construction in bordism classes

Begin: Work of Conner \& Floyd

1964

- $\mathcal{Z}_{m}\left(\mathbb{Z}_{2}^{n}\right)$: equivariant bordism group of m - $\operatorname{dim} \mathbb{Z}_{2}^{n}$-manifolds with isolated fixed points.
- \mathbb{Z}_{2}^{n}-equivariant bordism class is determined by its fixed point set and their normal bundles.
- $\mathcal{Z}_{*}\left(\mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$
- $\mathcal{Z}_{*}\left(\mathbb{Z}_{2}^{2}\right) \cong \mathbb{Z}_{2}[u]$, where $u=\left[\left(\mathbb{R} P^{2}, \mathbb{Z}_{2}^{2}\right)\right]$ and the action of \mathbb{Z}_{2}^{2} on $\mathbb{R} P^{2}$ is standard.

Continued: Conner-Floyd Algebra

- $\mathcal{R}_{m}\left(\mathbb{Z}_{2}^{n}\right)=\operatorname{Span}_{\mathbb{Z}_{2}}\left\{\right.$ iso. classes of m - $\operatorname{dim} \mathbb{Z}_{2}^{n}$-representations $\}$
- $\mathcal{R}_{*}\left(\mathbb{Z}_{2}^{n}\right)=\sum_{m=0}^{\infty} \mathcal{R}_{m}\left(\mathbb{Z}_{2}^{n}\right)$
- $\mathcal{R}_{*}\left(\mathbb{Z}_{2}^{n}\right)$ is a graded algebra over \mathbb{Z}_{2} : the multiplication is the direct sum of representations.
- $\operatorname{Hom}\left(\mathbb{Z}_{2}^{n}, \mathbb{Z}_{2}\right)$: set of irreducible \mathbb{Z}_{2}^{n}-representations.
- $\mathcal{R}_{*}\left(\mathbb{Z}_{2}^{n}\right)=\mathbb{Z}_{2}\left[\operatorname{Hom}\left(\mathbb{Z}_{2}^{n}, \mathbb{Z}_{2}\right) \backslash 0\right]$, polynomial ring whose generators are non-trival irreducible \mathbb{Z}_{2}^{n}-representations.

Work of Stong

EQUIVARIANT BORDISM AND $\left(Z_{2}\right)^{k}$ ACTIONS

By R. E. Stong

Duke Math. 1970

- If a \mathbb{Z}_{2}^{n}-manifold has no fixed point, then it equivariant bords.

key lemma

$$
\begin{array}{r}
\phi_{*}: \mathcal{Z}_{*}\left(\mathbb{Z}_{2}^{n}\right) \rightarrow \mathcal{R}_{*}\left(\mathbb{Z}_{2}^{n}\right), \\
{[M] \mapsto \sum_{p \in M^{\mathbb{Z}_{2}^{n}}}\left[\tau_{p} M\right]} \tag{1}
\end{array}
$$

is a monomorphism between graded algebras.

Work of Lü \& Tan

Small Covers and the Equivariant Bordism Classification of 2-torus Manifolds

Zhi Lü and Oiangbo Tan

- Consider \mathbb{Z}_{2}^{n} as the dual space of $\operatorname{Hom}\left(\mathbb{Z}_{2}^{n}, \mathbb{Z}_{2}\right)$
- Instead of the Conner-Floyd algebra $\mathcal{R}_{*}\left(\mathbb{Z}_{2}^{n}\right)$, consider the dual polynomial ring $\mathbb{Z}_{2}\left[\mathbb{Z}_{2}^{n} \backslash 0\right]$
- For any monomial $s_{1} \cdots s_{k} \in \mathbb{Z}_{2}\left[\mathbb{Z}_{2}^{n} \backslash 0\right]$, define

$$
d_{k}\left(s_{1} \ldots s_{k}\right)= \begin{cases}\sum_{i=1}^{k} s_{1} \cdots \hat{s}_{i} \cdots s_{k} & \text { if } k>1 \tag{2}\\ 1 & \text { if } k=1,0\end{cases}
$$

- $d^{2}=0$, i.e., $\left(\mathbb{Z}_{2}\left[\mathbb{Z}_{2}^{n} \backslash 0\right], d\right)$ is a chain complex.

Continued

- For a faithful n-dim \mathbb{Z}_{2}^{n}-rep. $\tau=\rho_{1} \cdots \rho_{n}$
- $\left\{\rho_{1}, \cdots, \rho_{n}\right\}$ is a basis of $\operatorname{Hom}\left(\mathbb{Z}_{2}^{n}, \mathbb{Z}_{2}\right)$.
- $\left\{\rho_{1}^{*}, \cdots, \rho_{n}^{*}\right\}$: the corresponding dual basis.
- $\tau^{*}:=\rho_{1}^{*} \cdots \rho_{n}^{*} \in \mathbb{Z}_{2}\left[\mathbb{Z}_{2}^{n} \backslash 0\right]$
- $\mathcal{E}_{n}:=\operatorname{Span}\{\tau \mid \tau$ faithful n-dim rep. $\} \subseteq \mathcal{R}_{n}\left(\mathbb{Z}_{2}^{n}\right)$
- $\operatorname{Im} \phi_{n} \subseteq \mathcal{E}_{n}$.
- $\mathcal{E}_{n}^{*}:=\operatorname{Span}\left\{\tau^{*} \mid \tau\right.$ faithful n-dim rep. $\} \subseteq \mathbb{Z}_{2}\left[\mathbb{Z}_{2}^{n} \backslash 0\right]$.

Lü \& Tan

Let $f=\sum \tau \in \mathcal{E}_{n}, f^{*}:=\sum \tau^{*}$. Then

$$
\begin{equation*}
f \in \operatorname{Im} \phi_{n} \Longleftrightarrow d f^{*}=0 \tag{3}
\end{equation*}
$$

Furthermore, $\mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right)$ is generated by small covers over products of simplices.

Our observation and Main theorem

- $X\left(\mathbb{Z}_{2}^{n}\right)$: Universal complex of \mathbb{Z}_{2}^{n} whose simplices are subsets of \mathbb{Z}_{2}^{n} which are linear indep.
- $\rho_{1}^{*} \cdots \rho_{n}^{*} \in \mathbb{Z}_{2}\left[\mathbb{Z}_{2}^{n} \backslash 0\right] \Leftrightarrow$ the $(n-1)$-simplex $\left[\rho_{1}^{*}, \ldots, \rho_{n}^{*}\right] \in X\left(\mathbb{Z}_{2}^{n}\right)$.
- the group $\mathcal{E}_{n}^{*}=\operatorname{Span}\left\{\tau^{*} \mid \tau\right.$ faithful n-dim rep. $\} \Leftrightarrow$ the $(n-1)$-th chain group $C_{n-1}\left(X\left(\mathbb{Z}_{2}^{n}\right), \mathbb{Z}_{2}\right)$
- the diff. $d \Leftrightarrow$ the boundary operator ∂ on $C_{n-1}\left(X\left(\mathbb{Z}_{2}^{n}\right), \mathbb{Z}_{2}\right)$.
- $d f^{*}=0 \Leftrightarrow f^{*} \in Z_{n-1}\left(X\left(\mathbb{Z}_{2}^{n}\right), \mathbb{Z}_{2}\right)$ is a closed ($\left.n-1\right)$-cycle.
- since $X\left(\mathbb{Z}_{2}^{n}\right)$ is pure and $(n-1)$-dimensional, we have

Main theorem

$$
\begin{equation*}
\mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right) \cong H_{n-1}\left(X\left(\mathbb{Z}_{2}^{n}\right), \mathbb{Z}_{2}\right) \tag{4}
\end{equation*}
$$

Universal complex $X\left(\mathbb{Z}_{2}^{n}\right)$ of \mathbb{Z}_{2}^{n}

UNIVERSAL SIMPLICIAL COMPLEXES INSPIRED BY TORIC TOPOLOGY

DJORDJE BARALIĆ, JELENA GRBIĆ, ALEŠ VAVPETIČ, ALEKSANDAR VUČIĆ

- [Björner] Finite matroids are shellable complexes.
- [Björner] A pure n-dimensional shellable complex has the homotopy type of a wedge of n-spheres.
- $X\left(\mathbb{Z}_{2}^{n}\right)$ is a finite matroid, so $X\left(\mathbb{Z}_{2}^{n}\right) \simeq \bigvee_{A_{n}} S^{n-1}$.
- By Euler characteristic $\chi\left(X\left(\mathbb{Z}_{2}^{n}\right)=\sum_{i}(-1)^{i} f_{i}=1+(-1)^{n-1} A_{n}\right.$,

$$
\begin{equation*}
A_{n}=(-1)^{n}+\sum_{i=0}^{n-1}(-1)^{n-1-i} \frac{\left(2^{n}-2^{i}\right) \cdots\left(2^{n}-1\right)}{(i+1)!} \tag{5}
\end{equation*}
$$

dimension of $\mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right)$

Corollary

$$
\begin{equation*}
\operatorname{dim} \mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right)=A_{n}=(-1)^{n}+\sum_{i=0}^{n-1}(-1)^{n-1-i} \frac{\left(2^{n}-2^{i}\right) \cdots\left(2^{n}-1\right)}{(i+1)!} . \tag{6}
\end{equation*}
$$

- $A_{1}=0, \mathcal{Z}_{1}\left(\mathbb{Z}_{2}\right)=0$. ([Conner-Floyd $\left.] \mathcal{Z}_{*}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\right)$
- $A_{2}=1, \mathcal{Z}_{2}\left(\mathbb{Z}_{2}^{2}\right) \cong \mathbb{Z}_{2}$. $\left([\right.$ Conner-Floyd $\left.] \mathcal{Z}_{*}\left(\mathbb{Z}_{2}^{2}\right)=\mathbb{Z}_{2}\left[\left[\mathbb{R} P^{2}\right]\right]\right)$
- $A_{3}=13$. $([\mathrm{Lu}])$
- $A_{4}=511$. $([$ Lü-Tan $])$
- $A_{5}=61,193$ (by Corollary above)

The whole story for bordism of 2-toric manifolds

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right) \xrightarrow{\phi_{n}} \quad \mathcal{R}_{n}\left(\mathbb{Z}_{2}^{n}\right) \\
& \| \quad \uparrow \subseteq \\
& 0 \longrightarrow \mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right) \xrightarrow{\phi_{n}} \quad \mathcal{E}_{n} \\
& \| \quad \text { daul basis } \uparrow \cong \\
& \begin{array}{cc}
0 \longrightarrow \mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right) \xrightarrow{\phi_{n}} & \mathcal{E}_{n}^{*} \quad \xrightarrow{d} \quad \mathbb{E}_{n-1}^{*} \\
\| & \\
\|
\end{array} \\
& 0 \longrightarrow \mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right) \xrightarrow{\phi_{n}} C_{n-1}\left(X\left(\mathbb{Z}_{2}^{n}\right)\right) \xrightarrow{\partial_{n-1}} C_{n-2}\left(X\left(\mathbb{Z}_{2}^{n}\right)\right) \longrightarrow 0
\end{aligned}
$$

Outline

(1) Introduction
(2) Equivariant bordism of 2-torus manifolds
(3) Equivariant bordism of unitary toric manifolds
(4) Toric topology construction in bordism classes

unitary T^{n}-manifolds

- A unitary T^{n}-manifold is an oriented closed smooth manifold equipped with an effective T^{n}-action, such that its tangent bundle admits a T^{n}-equivariant stable complex structure.
- A unitary toric manifold is a unitary T^{n}-manifold of dimension $2 n$
- $\mathcal{Z}_{m}^{U}\left(T^{n}\right)$: the equivariant bordism group of m-dimensional unitary T^{n}-manifolds with finite fixed point set.
- $\mathcal{Z}_{*}^{U}\left(T^{n}\right)=\sum_{m} \mathcal{Z}_{m}^{U}\left(T^{n}\right)$: the equivariant bordism ring.

unitary T^{n}-manifolds

- $M^{2 n}$: a unitary toric manifold
- $p \in M^{T}$ is a fixed point
- Two orientations on the tangent space $T_{p} M$:
- the one induced from the orientation of M, and
- the other induced from the stable complex structure on $T M$.
- Define the sign $\varepsilon(p)$ of p

$$
\varepsilon(p)= \begin{cases}+1 & \text { if these two orientations coincide } \tag{7}\\ -1 & \text { otherwise }\end{cases}
$$

- the tangent T^{n}-representaion at p can be decomposed to the product of irreducible T^{n}-representations

$$
\tau_{p}=\tau_{p, 1} \ldots \tau_{p, n}
$$

- [Masuda] $\left\{\tau_{p, 1}, \ldots, \tau_{p, n}\right\}$ are linearly independent

exterior algebra I

- $\operatorname{Hom}\left(T^{n}, S^{1}\right)\left(\cong \mathbb{Z}^{n}\right)$: set of all irreducible complex T^{n}-representations.
- $J_{n}^{\mathbb{C}}:=\operatorname{Hom}\left(T^{n}, S^{1}\right) \backslash 0$.
- $\Lambda_{\mathbb{Z}}^{*}\left(J_{n}^{\mathbb{C}}\right)=\sum_{m} \Lambda_{\mathbb{Z}}^{m}\left(J_{n}^{\mathbb{C}}\right)$: exterior algebra over $J_{n}^{\mathbb{C}}$
- essential exterior monomial $\tau=\tau_{1} \wedge \cdots \wedge \tau_{n}:\left\{\tau_{1}, \cdots, \tau_{m}\right\} \subseteq J_{n}^{\mathbb{C}}$ is linearly independent.
- essential exterior polynomial $f=\sum \tau_{i, 1} \wedge \cdots \wedge \tau_{i, m}$: sum of finitely many essential exterior T^{n}-monomial τ.
- $\mathcal{E}_{m}\left(J_{n}^{\mathbb{C}}\right)$: the set of homogeneous essential exterior polynomials of degree $0 \leq m \leq n$.

monomorphism

- Rearrange the basis $\left\{\tau_{p, 1}, \ldots, \tau_{p, n}\right\}$ if necessary such that

$$
\operatorname{det}\left[\tau_{p, 1} \ldots \tau_{p, n}\right]=\varepsilon(p)
$$

- Define $\varphi_{*}^{U}: \mathcal{Z}_{*}^{\mathbb{C}}\left(T^{n}\right) \rightarrow \Lambda_{\mathbb{Z}}^{*}\left(J_{n}^{\mathbb{C}}\right)$ to be

$$
\varphi_{*}^{U}([M])=\sum_{p \in M^{T^{n}}} \tau_{p, 1} \wedge \cdots \wedge \tau_{p, n}
$$

[Darby]

The map

$$
\varphi_{*}^{U}: \mathcal{Z}_{*}^{\mathbb{C}}\left(T^{n}\right) \rightarrow \Lambda_{\mathbb{Z}}^{*}\left(J_{n}^{\mathbb{C}}\right)
$$

is a monomorphism as algebras over \mathbb{Z}.

exterior algebra II

Consider the dual of the exterior algebra $\Lambda_{\mathbb{Z}}\left(J_{n}^{\mathbb{C}}\right)$

- $J_{n}^{* \mathbb{C}}:=\operatorname{Hom}\left(\operatorname{Hom}\left(T^{n}, S^{1}\right), \mathbb{Z}\right) \backslash 0 \cong \mathbb{Z}^{n} \backslash 0$.
- $\Lambda_{\mathbb{Z}}^{m}\left(J_{n}^{* \mathbb{C}}\right)$: exterior polynomials of degree m
- $\mathcal{E}_{m}\left(J_{n}^{* \mathbb{C}}\right)$: essential exterior T^{n}-polynomial of degree m, where $0 \leq m \leq n$.
- $\tau_{1} \wedge \cdots \wedge \tau_{n} \in \mathcal{E}_{n}\left(J_{n}^{\mathbb{C}}\right) \Leftrightarrow$ $\tau_{1}^{*} \wedge \cdots \wedge \tau_{n}^{*} \in \mathcal{E}_{n}^{*}\left(J_{n}^{* \mathbb{C}}\right) \Leftrightarrow$ $\left\{\tau_{1}, \ldots, \tau_{n}\right\}$ is a basis of $\operatorname{Hom}\left(\operatorname{Hom}\left(T^{n}, S^{1}\right), \mathbb{Z}\right) \cong \mathbb{Z}^{n}$

Darby's result

Define a differential on $\Lambda_{\mathbb{Z}}^{*}\left(J_{n}^{* C}\right)$

$$
d_{k}\left(\tau_{1} \wedge \cdots \wedge \tau_{k}\right)= \begin{cases}\sum_{i=1}^{k}(-1)^{i+1} \tau_{1} \wedge \cdots \wedge \hat{\tau}_{i} \wedge \cdots \wedge \tau_{k} & \text { if } k>1 \tag{8}\\ 1 & \text { if } k=1,0\end{cases}
$$

- $d^{2}=0$, and $\left(\mathcal{E}_{*}\left(J_{n}^{*} \mathbb{C}\right), d\right)$ becomes a chain complex.

[Darby] Theorem 8.5
 Let $g \in \mathcal{E}_{n}\left(J_{n}^{\mathbb{C}}\right)$. Then $g \in \operatorname{Im} \varphi_{n}^{U}$ iff $d\left(g^{*}\right)=0$.

universal complex $X\left(\mathbb{Z}^{n}\right)$ of \mathbb{Z}^{n}

UNIVERSAL SIMPLICIAL COMPLEXES INSPIRED BY TORIC TOPOLOGY

DJORDJE BARALIĆ, JELENA GRBIĆ, ALEŠ VAVPETIČ, ALEKSANDAR VUČIĆ
arxiv: $1708.09565 \mathrm{v} 2(2020)$

- A subset $\left\{v_{1}, \ldots, v_{m}\right\}$ of \mathbb{Z}^{n} is unimodular if $\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ is a direct summand of \mathbb{Z}^{n} with rank m.
- $X\left(\mathbb{Z}^{n}\right)$: the collection of all unimodular subsets of \mathbb{Z}^{n}. Specially, the vertices are corresponding to the primitive vectors in \mathbb{Z}^{n}.
- $X\left(\mathbb{Z}^{n}\right)$ is pure and $(n-1)$-dimensional.
$\mathrm{X}\left(\mathrm{Z}^{n}\right)$ is homotopy equivalent to a countablely infinite wedge of ($n-1$)-spheres.

Our observation and Main theorem

- monomial $\rho_{1}^{*} \cdots \rho_{n}^{*} \in \mathcal{E}_{n}\left(J_{n}^{* \mathbb{C}}\right) \Leftrightarrow$ the $(n-1)$-simplex $\left[\rho_{1}^{*}, \ldots, \rho_{n}^{*}\right] \in X\left(\mathbb{Z}^{n}\right)$.
- $\mathcal{E}_{n}^{*}\left(J_{n}^{* \mathbb{C}}\right)=\operatorname{Span}\left\{\tau^{*} \mid \tau\right.$ faithful n-dim complex rep. $\} \Leftrightarrow$ the $(n-1)$-th chain group $C_{n-1}\left(X\left(\mathbb{Z}^{n}\right), \mathbb{Z}\right)$
- the diff. $d \Leftrightarrow$ the boundary operator ∂ on $C_{n-1}\left(X\left(\mathbb{Z}^{n}\right), \mathbb{Z}\right)$.
- $d f^{*}=0 \Leftrightarrow f^{*} \in Z_{n-1}\left(X\left(\mathbb{Z}^{n}\right), \mathbb{Z}\right)$ is a closed $(n-1)$-cycle.
- since $X\left(\mathbb{Z}^{n}\right)$ is pure and $(n-1)$-dimensional, we have

Main theorem

$$
\begin{equation*}
\mathcal{Z}_{n}\left(\mathbb{Z}^{n}\right) \cong Z_{n-1}\left(X\left(\mathbb{Z}^{n}\right), \mathbb{Z}\right)=H_{n-1}\left(X\left(\mathbb{Z}^{n}\right), \mathbb{Z}\right) \tag{9}
\end{equation*}
$$

Corollary

$\mathcal{Z}_{n}^{U}\left(T^{n}\right) \cong H_{n-1}\left(X\left(\mathbb{Z}^{n}\right) ; \mathbb{Z}\right)$ is a free abelian group with countable infinite rank.

The whole story for bordism of unitary toric manifolds

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{Z}_{n}^{U}\left(T^{n}\right) \xrightarrow{\varphi_{n}^{U}} \quad \Lambda_{\mathbb{Z}}^{n}\left(J_{n}^{\mathbb{C}}\right) \\
& \| \quad \uparrow \subseteq \\
& 0 \longrightarrow \mathcal{Z}_{n}^{U}\left(T^{n}\right) \xrightarrow{\varphi_{n}^{U}} \quad \mathcal{E}_{n}\left(J_{n}^{\mathbb{C}}\right) \\
& \| \quad \text { daul basis } \uparrow \cong \\
& 0 \longrightarrow \mathcal{Z}_{n}^{U}\left(T^{n}\right) \xrightarrow{\varphi_{n}^{U}} \mathcal{E}_{n}\left(J_{n}^{* \mathbb{C}}\right) \quad \xrightarrow{d} \mathcal{E}_{n-1}\left(J_{n}^{* \mathbb{C}}\right) \\
& \longrightarrow 0 \\
& \|\|\| \\
& 0 \longrightarrow \mathcal{Z}_{n}^{U}\left(T^{n}\right) \xrightarrow{\varphi_{n}^{U}} C_{n-1}\left(X\left(\mathbb{Z}^{n}\right)\right) \xrightarrow{\partial_{n-1}} C_{n-2}\left(X\left(\mathbb{Z}^{n}\right)\right) \longrightarrow 0
\end{aligned}
$$

Outline

(1) Introduction

(2) Equivariant bordism of 2-torus manifolds

(3) Equivariant bordism of unitary toric manifolds
(4) Toric topology construction in bordism classes

simplicial spheres in universal complexes

- G_{d} is \mathbb{Z}_{2} or S^{1} and R_{d} is \mathbb{Z}_{2} or \mathbb{Z}, as the notations in [DJ].
- S_{d}^{n-1} : simplicial $(n-1)$-sphere in universal complexe $X\left(R_{d}^{n}\right)$.
- Each maximal simplex of S_{d}^{n-1} consists of a basis of G_{d}^{n}.
- S_{d}^{n-1} is a simplicial sphere with a (injective) characteristic map $\lambda: V\left(S_{d}^{n-1}\right) \rightarrow R_{d}^{n}$.
- $M\left(S_{d}^{n-1}\right)=P_{S_{d}^{n-1}} \times G_{d}^{n} / \sim$. (construction in [DJ])
- $M\left(S_{d}^{n-1}\right)=\mathcal{Z}_{S_{d}^{n-1}} / \operatorname{ker} \tilde{\lambda}$, where $\tilde{\lambda}: R_{d}^{|V|} \rightarrow R_{d}^{n}$.
- $M\left(S_{d}^{n-1}\right)$ is a $d n$-dimensional manifold.

Question

Is $M\left(S_{d}^{n-1}\right)$ smooth?
If the answer is YES, then such manifold may be chosen to be representive element for equivariant bordism class.

small covers and equiviariant bordism classes

[Lü\&Tan]:

- Theorem 2.6: $\mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right)$ is generated by all general Bott tower which are small covers over product of simplices.
- Each class of $\mathcal{Z}_{n}\left(\mathbb{Z}_{2}^{n}\right)$ contains a small cover as its representative.

Problem

Search a new proof via the simplicial spheres in universal complex.
Observation:

- $\lambda: \partial P^{*} \rightarrow X\left(\mathbb{Z}_{2}^{n}\right)$ is a nondegerated simplical map, for any simple convex polytope P with char. map λ.
- Fact: every characteristic map on the product of simplices is an injection. $\lambda:\left(\partial \Pi_{i} \Delta^{i}\right)^{*} \rightarrow X\left(\mathbb{Z}_{2}^{n}\right)$ is an embedding.
- \forall maximal simplexes σ and τ and $\sigma \cap \tau=\emptyset, \exists \gamma$, such that $\gamma \subseteq \sigma \cup \tau$ as subsets of \mathbb{Z}_{2}^{n}.
- Hence, the maxiaml simplexes of 'essential' sphere maybe intersect to each other.

omniorientation

- S^{n-1} : simplicial $(n-1)$-sphere in $X\left(\mathbb{Z}^{n}\right)$.
- omniorientation of S^{n-1} : consists of two choices
- an orientation for S^{n-1}
- and orientations for every link $\operatorname{link}_{S}(v)$ for all vertices $v \in V\left(S^{n-1}\right)$
- omniorientation of $S^{n-1} \cong$ omniorientation of $P_{S^{n-1}}$
- omniorientation of S^{n-1} determines an omniorientation of $M\left(S^{n-1}\right)$
- If $M\left(S^{n-1}\right)$ is smooth, then $M\left(S^{n-1}\right)$ is a unitary torous manifold.
- Thanks to the Steinitz theorem, every $M\left(S^{2}\right)$ is a 6 -dim quasitoric manifold.
$\mathcal{Z}_{3}\left(T^{3}\right)$ is generated by quasitoric manifolds.

Bibliography

围 Anders Björner, Homology and shellability of matroids and geometric lattices, Matroid applications, 283. MR 1165544
囯 Zhi Lü and Qiangbo Tan, small covers and the equivariant bordism classification of 2-torus manifolds, Int. Math. Res. Notices
R A. Darby, Quasitoric manifolds in equivariant complex bordism, Ph.D. thesis, 2013

