Equivariant Bordism of 2-torus Manifolds and Unitary Toric Manifolds

Bo Chen, Z. Lü and Q. Tan

March 23-25, 2022

Outline

- Introduction
- 2 Equivariant bordism of 2-torus manifolds
- 3 Equivariant bordism of unitary toric manifolds
- Toric topology construction in bordism classes

Outline

- Introduction
- 2 Equivariant bordism of 2-torus manifolds
- 3 Equivariant bordism of unitary toric manifolds
- 4 Toric topology construction in bordism classes

Notations and Definitions

- All the group actions are assumed to be effective here.
- 2-torus manifold M^n : a smooth closed n-dimensional manifold equipped with an effective smooth \mathbb{Z}_2^n -action.
- unitary toric manifold M^{2n} : an oriented closed smooth manifold M^{2n} with an effective T^n -action such that its tangent bundle TM admits a T^n -equivariant stable complex structure, and the fixed point set M^{T^n} is nonempty
- A (oriented) G-manifold M is said to be G-equivariant bord if there is a compact (oriented) G-manifold W, such that ∂W is invariant under the G-action and $\partial W \cong M$ as (oriented) G-manifolds.
- Two (oriented) G-manifolds M and N are G-equivariant bordant if $M \bigcup N \ (M \bigcup -N)$ is G-equivariant bords.

Equivarint Bordism Classification

- G: a compact Lie group
- $\Omega_n(G)$: the set of (unoriented, orientable, unitary, etc.) G-equivariant bordism classes of n-dimensional G-manifolds.
- $\Omega_n(G)$ forms an abelian group under the disjoint union.
- $\Omega_*(G) = \sum_{n=0}^{\infty} \Omega_n(G)$ forms a graded ring under the cartesian product of manifolds and diagonal G-action.

Quite Hard Problem

Determine $\Omega_n(G)$ and $\Omega_*(G)$.

Equivariant bordisms of 2-torus and unitary toric manifolds

- $\mathcal{Z}_n(\mathbb{Z}_2^n)$: the equivariant bordism groups of 2-torus manifolds
- \bullet $\mathcal{Z}_n^U(T^n):$ the equivariant bordism groups of unitary toric manifolds
- $X(\mathbb{Z}_2^n)$ and $X(\mathbb{Z}^n)$: the universal complex of \mathbb{Z}_2^n and \mathbb{Z}^n , resp..

In this talk, it'll be shown that

Our Result

$$\mathcal{Z}_n(\mathbb{Z}_2^n) \cong H_{n-1}(X(\mathbb{Z}_2^n), \mathbb{Z}_2)$$

$$\mathcal{Z}_n^U(T^n) \cong H_{n-1}(X(\mathbb{Z}^n), \mathbb{Z})$$

Outline

- Introduction
- 2 Equivariant bordism of 2-torus manifolds
- 3 Equivariant bordism of unitary toric manifolds
- ① Toric topology construction in bordism classes

Begin: Work of Conner & Floyd

1964

- $\mathcal{Z}_m(\mathbb{Z}_2^n)$: equivariant bordism group of m-dim \mathbb{Z}_2^n -manifolds with isolated fixed points.
- Z₂ⁿ-equivariant bordism class is determined by its fixed point set and their normal bundles.
- $\mathcal{Z}_*(\mathbb{Z}_2) \cong \mathbb{Z}_2$
- $\mathcal{Z}_*(\mathbb{Z}_2^2) \cong \mathbb{Z}_2[u]$, where $u = [(\mathbb{R}P^2, \mathbb{Z}_2^2)]$ and the action of \mathbb{Z}_2^2 on $\mathbb{R}P^2$ is standard.

Continued: Conner-Floyd Algebra

- $\mathcal{R}_m(\mathbb{Z}_2^n) = \operatorname{Span}_{\mathbb{Z}_2} \{ \text{iso. classes of } m\text{-dim } \mathbb{Z}_2^n \text{-representations} \}$
- $\mathcal{R}_*(\mathbb{Z}_2^n) = \sum_{m=0}^{\infty} \mathcal{R}_m(\mathbb{Z}_2^n)$
- $\mathcal{R}_*(\mathbb{Z}_2^n)$ is a graded algebra over \mathbb{Z}_2 : the multiplication is the direct sum of representations.
- Hom($\mathbb{Z}_2^n, \mathbb{Z}_2$): set of irreducible \mathbb{Z}_2^n -representations.
- $\mathcal{R}_*(\mathbb{Z}_2^n) = \mathbb{Z}_2[\operatorname{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2) \setminus 0]$, polynomial ring whose generators are non-trival irreducible \mathbb{Z}_2^n -representations.

Work of Stong

EQUIVARIANT BORDISM AND $(Z_2)^k$ ACTIONS

By R. E. Stong

Duke Math. 1970

• If a \mathbb{Z}_2^n -manifold has no fixed point, then it equivariant bords.

key lemma

$$\phi_* : \mathcal{Z}_*(\mathbb{Z}_2^n) \to \mathcal{R}_*(\mathbb{Z}_2^n),$$

$$[M] \mapsto \sum_{p \in M^{\mathbb{Z}_2^n}} [\tau_p M] \tag{1}$$

is a monomorphism between graded algebras.

Work of Lü & Tan

Small Covers and the Equivariant Bordism Classification of 2-torus Manifolds

Zhi Lü and Qiangbo Tan

International Math. Research Notices, 2014

- Consider \mathbb{Z}_2^n as the dual space of $\mathrm{Hom}(\mathbb{Z}_2^n,\mathbb{Z}_2)$
- Instead of the Conner-Floyd algebra $\mathcal{R}_*(\mathbb{Z}_2^n)$, consider the dual polynomial ring $\mathbb{Z}_2[\mathbb{Z}_2^n \setminus 0]$
- For any monomial $s_1 \cdots s_k \in \mathbb{Z}_2[\mathbb{Z}_2^n \setminus 0]$, define

$$d_k(s_1 \dots s_k) = \begin{cases} \sum_{i=1}^k s_1 \dots \hat{s_i} \dots s_k & \text{if } k > 1\\ 1 & \text{if } k = 1, 0 \end{cases}$$
 (2)

• $d^2 = 0$, i.e., $(\mathbb{Z}_2[\mathbb{Z}_2^n \setminus 0], d)$ is a chain complex.

Continued

- For a faithful *n*-dim \mathbb{Z}_2^n -rep. $\tau = \rho_1 \cdots \rho_n$
- $\{\rho_1, \dots, \rho_n\}$ is a basis of $\operatorname{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$.
- $\{\rho_1^*, \dots, \rho_n^*\}$: the corresponding dual basis.
- $\tau^* := \rho_1^* \cdots \rho_n^* \in \mathbb{Z}_2[\mathbb{Z}_2^n \setminus 0]$
- $\mathcal{E}_n := \operatorname{Span}\{\tau \mid \tau \text{ faithful } n\text{-dim rep. }\} \subseteq \mathcal{R}_n(\mathbb{Z}_2^n)$
- $\operatorname{Im}\phi_n\subseteq\mathcal{E}_n$.
- $\mathcal{E}_n^* := \operatorname{Span}\{\tau^* | \tau \text{ faithful } n\text{-dim rep. }\} \subseteq \mathbb{Z}_2[\mathbb{Z}_2^n \setminus 0].$

Lü & Tan

Let
$$f = \sum \tau \in \mathcal{E}_n$$
, $f^* := \sum \tau^*$. Then

$$f \in \operatorname{Im} \phi_n \iff df^* = 0.$$
 (3)

Furthermore, $\mathcal{Z}_n(\mathbb{Z}_2^n)$ is generated by small covers over products of simplices.

Our observation and Main theorem

- $X(\mathbb{Z}_2^n)$: Universal complex of \mathbb{Z}_2^n whose simplices are subsets of \mathbb{Z}_2^n which are linear indep.
- $\rho_1^* \cdots \rho_n^* \in \mathbb{Z}_2[\mathbb{Z}_2^n \setminus 0] \Leftrightarrow \text{the } (n-1)\text{-simplex } [\rho_1^*, \dots, \rho_n^*] \in X(\mathbb{Z}_2^n).$
- the group $\mathcal{E}_n^* = \operatorname{Span}\{\tau^* \mid \tau \text{ faithful } n\text{-dim rep. }\} \Leftrightarrow \operatorname{the}(n-1)\text{-th}$ chain group $C_{n-1}(X(\mathbb{Z}_2^n),\mathbb{Z}_2)$
- the diff. $d \Leftrightarrow$ the boundary operator ∂ on $C_{n-1}(X(\mathbb{Z}_2^n), \mathbb{Z}_2)$.
- $df^* = 0 \Leftrightarrow f^* \in Z_{n-1}(X(\mathbb{Z}_2^n), \mathbb{Z}_2)$ is a closed (n-1)-cycle.
- since $X(\mathbb{Z}_2^n)$ is pure and (n-1)-dimensional, we have

Main theorem

$$\mathcal{Z}_n(\mathbb{Z}_2^n) \cong H_{n-1}(X(\mathbb{Z}_2^n), \mathbb{Z}_2). \tag{4}$$

Universal complex $X(\mathbb{Z}_2^n)$ of \mathbb{Z}_2^n

UNIVERSAL SIMPLICIAL COMPLEXES INSPIRED BY TORIC TOPOLOGY

DJORDJE BARALIĆ, JELENA GRBIĆ, ALEŠ VAVPETIČ, ALEKSANDAR VUČIĆ

arxiv:1708.09565v2(2020)

- [Björner] Finite matroids are shellable complexes.
- [Björner] A pure n-dimensional shellable complex has the homotopy type of a wedge of n-spheres.
- $X(\mathbb{Z}_2^n)$ is a finite matroid, so $X(\mathbb{Z}_2^n) \simeq \bigvee_{A_n} S^{n-1}$.
- By Euler characteristic $\chi(X(\mathbb{Z}_2^n) = \sum_i (-1)^i f_i = 1 + (-1)^{n-1} A_n$,

$$A_n = (-1)^n + \sum_{i=0}^{n-1} (-1)^{n-1-i} \frac{(2^n - 2^i) \cdots (2^n - 1)}{(i+1)!}$$
 (5)

dimension of $\mathcal{Z}_n(\mathbb{Z}_2^n)$

Corollary

$$\dim \mathcal{Z}_n(\mathbb{Z}_2^n) = A_n = (-1)^n + \sum_{i=0}^{n-1} (-1)^{n-1-i} \frac{(2^n - 2^i) \cdots (2^n - 1)}{(i+1)!}.$$
 (6)

- $A_1 = 0$, $\mathcal{Z}_1(\mathbb{Z}_2) = 0$. ([Conner-Floyd] $\mathcal{Z}_*(\mathbb{Z}_2) = \mathbb{Z}_2$)
- $A_2 = 1$, $\mathcal{Z}_2(\mathbb{Z}_2^2) \cong \mathbb{Z}_2$. ([Conner-Floyd] $\mathcal{Z}_*(\mathbb{Z}_2^2) = \mathbb{Z}_2[[\mathbb{R}P^2]]$)
- $A_3 = 13$. ([Lü])
- $A_4 = 511$. ([Lü-Tan])
- $A_5 = 61,193$ (by Corollary above)
- ..

The whole story for bordism of 2-toric manifolds

$$0 \longrightarrow \mathcal{Z}_{n}(\mathbb{Z}_{2}^{n}) \stackrel{\phi_{n}}{\longrightarrow} \mathcal{R}_{n}(\mathbb{Z}_{2}^{n})$$

$$\parallel \qquad \qquad \uparrow \subseteq$$

$$0 \longrightarrow \mathcal{Z}_{n}(\mathbb{Z}_{2}^{n}) \stackrel{\phi_{n}}{\longrightarrow} \mathcal{E}_{n}$$

$$\parallel \qquad \qquad \text{daul basis} \uparrow \cong$$

$$0 \longrightarrow \mathcal{Z}_{n}(\mathbb{Z}_{2}^{n}) \stackrel{\phi_{n}}{\longrightarrow} \mathcal{E}_{n}^{*} \stackrel{d}{\longrightarrow} \mathcal{E}_{n-1}^{*} \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \mathcal{Z}_{n}(\mathbb{Z}_{2}^{n}) \stackrel{\phi_{n}}{\longrightarrow} C_{n-1}(X(\mathbb{Z}_{2}^{n})) \stackrel{\partial_{n-1}}{\longrightarrow} C_{n-2}(X(\mathbb{Z}_{2}^{n})) \longrightarrow 0$$

Outline

- Introduction
- 2 Equivariant bordism of 2-torus manifolds
- 3 Equivariant bordism of unitary toric manifolds
- 4 Toric topology construction in bordism classes

unitary T^n -manifolds

- A unitary T^n -manifold is an oriented closed smooth manifold equipped with an effective T^n -action, such that its tangent bundle admits a T^n -equivariant stable complex structure.
- \bullet A unitary toric manifold is a unitary $T^n\text{-manifold}$ of dimension 2n
- $\mathcal{Z}_m^U(T^n)$: the equivariant bordism group of m-dimensional unitary T^n -manifolds with finite fixed point set.
- $\mathcal{Z}^{U}_{*}(T^{n}) = \sum_{m} \mathcal{Z}^{U}_{m}(T^{n})$: the equivariant bordism ring.

unitary T^n -manifolds

- M^{2n} : a unitary toric manifold
- $p \in M^T$ is a fixed point
- Two orientations on the tangent space T_pM :
 - the one induced from the orientation of M, and
 - the other induced from the stable complex structure on TM.
- Define the sign $\varepsilon(p)$ of p

$$\varepsilon(p) = \begin{cases} +1 & \text{if these two orientations coincide} \\ -1 & \text{otherwise} \end{cases}$$
 (7)

• the tangent T^n -representation at p can be decomposed to the product of irreducible T^n -representations

$$\tau_p = \tau_{p,1} \dots \tau_{p,n}$$

• [Masuda] $\{\tau_{p,1}, \ldots, \tau_{p,n}\}$ are linearly independent

exterior algebra I

- $\operatorname{Hom}(T^n, S^1) \cong \mathbb{Z}^n$: set of all irreducible complex T^n -representations.
- $J_n^{\mathbb{C}} := \operatorname{Hom}(T^n, S^1) \setminus 0.$
- $\Lambda_{\mathbb{Z}}^*(J_n^{\mathbb{C}}) = \sum_m \Lambda_{\mathbb{Z}}^m(J_n^{\mathbb{C}})$: exterior algebra over $J_n^{\mathbb{C}}$
- essential exterior monomial $\tau = \tau_1 \wedge \cdots \wedge \tau_n$: $\{\tau_1, \cdots, \tau_m\} \subseteq J_n^{\mathbb{C}}$ is linearly independent.
- essential exterior polynomial $f = \sum \tau_{i,1} \wedge \cdots \wedge \tau_{i,m}$: sum of finitely many essential exterior T^n -monomial τ .
- $\mathcal{E}_m(J_n^{\mathbb{C}})$: the set of homogeneous essential exterior polynomials of degree $0 \leq m \leq n$.

monomorphism

• Rearrange the basis $\{\tau_{p,1},\ldots,\tau_{p,n}\}$ if necessary such that

$$\det[\tau_{p,1}\dots\tau_{p,n}]=\varepsilon(p)$$

• Define $\varphi^U_*: \mathcal{Z}^{\mathbb{C}}_*(T^n) \to \Lambda^*_{\mathbb{Z}}(J^{\mathbb{C}}_n)$ to be

$$\varphi_*^U([M]) = \sum_{p \in M^{T^n}} \tau_{p,1} \wedge \dots \wedge \tau_{p,n}$$

[Darby]

The map

$$\varphi_*^U: \mathcal{Z}_*^{\mathbb{C}}(T^n) \to \Lambda_{\mathbb{Z}}^*(J_n^{\mathbb{C}})$$

is a monomorphism as algebras over \mathbb{Z} .

exterior algebra II

Consider the dual of the exterior algebra $\Lambda_{\mathbb{Z}}(J_n^{\mathbb{C}})$

- $J_n^{*\mathbb{C}} := \operatorname{Hom}(\operatorname{Hom}(T^n, S^1), \mathbb{Z}) \setminus 0 \cong \mathbb{Z}^n \setminus 0.$
- $\Lambda^m_{\mathbb{Z}}(J_n^{*\mathbb{C}})$: exterior polynomials of degree m
- $\mathcal{E}_m(J_n^{*\mathbb{C}})$: essential exterior T^n -polynomial of degree m, where $0 \le m \le n$.
- $\tau_1 \wedge \cdots \wedge \tau_n \in \mathcal{E}_n(J_n^{\mathbb{C}}) \Leftrightarrow \tau_1^* \wedge \cdots \wedge \tau_n^* \in \mathcal{E}_n^*(J_n^{*\mathbb{C}}) \Leftrightarrow \{\tau_1, \dots, \tau_n\} \text{ is a basis of } \operatorname{Hom}(\operatorname{Hom}(T^n, S^1), \mathbb{Z}) \cong \mathbb{Z}^n$

Darby's result

Define a differential on $\Lambda_{\mathbb{Z}}^*(J_n^{*\mathbb{C}})$

$$d_k(\tau_1 \wedge \dots \wedge \tau_k) = \begin{cases} \sum_{i=1}^k (-1)^{i+1} \tau_1 \wedge \dots \wedge \hat{\tau_i} \wedge \dots \wedge \tau_k & \text{if } k > 1\\ 1 & \text{if } k = 1, 0 \end{cases}$$
(8)

• $d^2 = 0$, and $(\mathcal{E}_*(J_n^{*\mathbb{C}}), d)$ becomes a chain complex.

[Darby] Theorem 8.5

Let $g \in \mathcal{E}_n(J_n^{\mathbb{C}})$. Then $g \in \operatorname{Im} \varphi_n^U$ iff $d(g^*) = 0$.

universal complex $X(\mathbb{Z}^n)$ of \mathbb{Z}^n

UNIVERSAL SIMPLICIAL COMPLEXES INSPIRED BY TORIC TOPOLOGY

DJORDJE BARALIĆ, JELENA GRBIĆ, ALEŠ VAVPETIČ, ALEKSANDAR VUČIĆ

arxiv:1708.09565v2(2020)

- A subset $\{v_1, \ldots, v_m\}$ of \mathbb{Z}^n is unimodular if span $\{v_1, \ldots, v_m\}$ is a direct summand of \mathbb{Z}^n with rank m.
- $X(\mathbb{Z}^n)$: the collection of all unimodular subsets of \mathbb{Z}^n . Specially, the vertices are corresponding to the primitive vectors in \mathbb{Z}^n .
- $X(\mathbb{Z}^n)$ is pure and (n-1)-dimensional.

 $X(\mathbb{Z}^n)$ is homotopy equivalent to a countablely infinite wedge of (n-1)-spheres.

Our observation and Main theorem

- monomial $\rho_1^* \cdots \rho_n^* \in \mathcal{E}_n(J_n^{*\mathbb{C}}) \Leftrightarrow \text{the } (n-1)\text{-simplex}$ $[\rho_1^*, \dots, \rho_n^*] \in X(\mathbb{Z}^n).$
- $\mathcal{E}_n^*(J_n^{*\mathbb{C}}) = \operatorname{Span}\{\tau^* \mid \tau \text{ faithful } n\text{-dim complex rep. }\} \Leftrightarrow \operatorname{the} (n-1)\text{-th chain group } C_{n-1}(X(\mathbb{Z}^n),\mathbb{Z})$
- the diff. $d \Leftrightarrow$ the boundary operator ∂ on $C_{n-1}(X(\mathbb{Z}^n), \mathbb{Z})$.
- $df^* = 0 \Leftrightarrow f^* \in Z_{n-1}(X(\mathbb{Z}^n), \mathbb{Z})$ is a closed (n-1)-cycle.
- since $X(\mathbb{Z}^n)$ is pure and (n-1)-dimensional, we have

Main theorem

$$\mathcal{Z}_n(\mathbb{Z}^n) \cong Z_{n-1}(X(\mathbb{Z}^n), \mathbb{Z}) = H_{n-1}(X(\mathbb{Z}^n), \mathbb{Z}). \tag{9}$$

Corollary

 $\mathcal{Z}_n^U(T^n) \cong H_{n-1}(X(\mathbb{Z}^n);\mathbb{Z})$ is a free abelian group with countable infinite rank.

The whole story for bordism of unitary toric manifolds

Outline

- Introduction
- 2 Equivariant bordism of 2-torus manifolds
- 3 Equivariant bordism of unitary toric manifolds
- 1 Toric topology construction in bordism classes

simplicial spheres in universal complexes

- G_d is \mathbb{Z}_2 or S^1 and R_d is \mathbb{Z}_2 or \mathbb{Z} , as the notations in [DJ].
- S_d^{n-1} : simplicial (n-1)-sphere in universal complexe $X(R_d^n)$.
- Each maximal simplex of S_d^{n-1} consists of a basis of G_d^n .
- S_d^{n-1} is a simplicial sphere with a (injective) characteristic map $\lambda: V(S_d^{n-1}) \to R_d^n$.
- $M(S_d^{n-1}) = P_{S_d^{n-1}} \times G_d^n / \sim$. (construction in [DJ])
- $M(S_d^{n-1}) = \mathbb{Z}_{S_d^{n-1}} / \ker \tilde{\lambda}$, where $\tilde{\lambda} : R_d^{|V|} \to R_d^n$.
- $M(S_d^{n-1})$ is a dn-dimensional manifold.

Question

Is $M(S_d^{n-1})$ smooth?

If the answer is YES, then such manifold may be chosen to be representive element for equivariant bordism class.

small covers and equiviariant bordism classes

[Lü&Tan]:

- Theorem 2.6: $\mathcal{Z}_n(\mathbb{Z}_2^n)$ is generated by all general Bott tower which are small covers over product of simplices.
- Each class of $\mathcal{Z}_n(\mathbb{Z}_2^n)$ contains a small cover as its representative.

Problem

Search a new proof via the simplicial spheres in universal complex.

Observation:

- $\lambda: \partial P^* \to X(\mathbb{Z}_2^n)$ is a nondegerated simplical map, for any simple convex polytope P with char. map λ .
- Fact: every characteristic map on the product of simplices is an injection. $\lambda: (\partial \Pi_i \Delta^i)^* \to X(\mathbb{Z}_2^n)$ is an embedding.
- \forall maximal simplexes σ and τ and $\sigma \cap \tau = \emptyset$, $\exists \gamma$, such that $\gamma \subseteq \sigma \cup \tau$ as subsets of \mathbb{Z}_2^n .
- Hence, the maxiaml simplexes of 'essential' sphere maybe intersect to each other.

omniorientation

- S^{n-1} : simplicial (n-1)-sphere in $X(\mathbb{Z}^n)$.
- omniorientation of S^{n-1} : consists of two choices
 - an orientation for S^{n-1}
 - and orientations for every link $link_S(v)$ for all vertices $v \in V(S^{n-1})$
- omniorientation of $S^{n-1} \cong$ omniorientation of $P_{S^{n-1}}$
- omniorientation of S^{n-1} determines an omniorientation of $M(S^{n-1})$
- If $M(S^{n-1})$ is smooth, then $M(S^{n-1})$ is a unitary torous manifold.
- Thanks to the Steinitz theorem, every $M(S^2)$ is a 6-dim quasitoric manifold.

 $\mathcal{Z}_3(T^3)$ is generated by quasitoric manifolds.

Bibliography

- Anders Björner, Homology and shellability of matroids and geometric lattices, Matroid applications, 283. MR 1165544
- Zhi Lü and Qiangbo Tan, small covers and the equivariant bordism classification of 2-torus manifolds, Int. Math. Res. Notices
- A. Darby, Quasitoric manifolds in equivariant complex bordism, Ph.D. thesis, 2013