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Positivity of line bundles

“Positivity” of line bundles means that it has “many global sections”.

Positivity

Geometric

Cohomological

Numerical
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Positivity of line bundles

Framework: All varieties are nonsingular projective defined over C.

Let L be a line bundle on a variety X and s0, s1, . . . sN be a C-basis for

H0(X,L). Then there is the associated Kodaira map

ϕL : X \Bs(L) −! PN , defined by x 7−! [s0(x) : s1(x) : . . . : sN (x)],

where Bs(L) := V(s0) ∩ . . . ∩ V(sN ) is the base locus of the line bundle L.

The line bundle L is called globally generated if Bs(L) = ∅. In addition, if

ϕL defines a closed embedding ϕL : X ↪! PN , then L is said to be very

ample.

The line bundle L is called ample if there exists a positive integer m such

that L⊗m is very ample.
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Some criteria for ampleness

Theorem 1 (Nakai-Moishezon-Kleiman criterion)

Let L be a line bundle on a projective variety X. Then L is ample if and only if

Ldim V · V > 0

for every positive dimensional irreducible subvariety V ⊆ X.

A line bundle L is called numerically effective (nef) if L · C ≥ 0 for all

irreducible curves C in X.

Seshadri criterion for ampleness (1972)

A line bundle L on X is ample if and only if for every point x ∈ X there exists

a positive number ε such that L·C
multxC

≥ ε for all curves C passing through x.

Lets look for optimal values of ε!
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Seshadri constants

Definition 1 (Demailly(1992))

Let L be a nef line bundle on a complex projective variety X. For a point

x ∈ X, the Seshadri constant of L at x is defined to be

ε(X,L, x) := inf
x∈C

L · C
multxC

.

This numerical invariant measures the ”local positivity” of the line bundle L at

the point x.

Reformulation of Seshadri’s ampleness criterion

A nef line bundle on X is ample if and only if ε(L) := inf
x∈X

ε(X,L, x) > 0.

Jyoti Dasgupta (IISER PUNE) Seshadri constants of equivariant vector bundles on toric varieties



Original goal

Fujita conjecture

Let X be a projective variety. Let L be an ample line bundle on X and

n = dim(X).

KX +mL is globally generated for m ≥ n+ 1.

KX +mL is very ample for m ≥ n+ 2.

The result is known for n = 2 (Rider (1988)) and n = 3 (Ein-Lazarsfeld).

Demailly’s approach

If ε(X,L, x) > n
n+1

for all x ∈ X then KX + (n+ 1)L is globally

generated.

If ε(X,L, x) > 2n
n+2

for all x ∈ X then KX + (n+ 2)L is very ample.

Miranda(1993) : too optimistic to conclude Fujita conjecture.
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Bounding Seshadri constants

Miranda’s Example

Fix any δ > 0, then there exists a smooth surface X, a point x ∈ X, and an

ample line bundle L on X such that

ε(X,L, x) < δ.

Recall ε(L) := inf
x∈X

ε(X,L, x).

From Miranda’s example, we know that ε(L) can be arbitrarily small.

If L is very ample, then ε(L) ≥ 1.

Define ε(X) := inf
L ample

ε(L).

Is ε(X) = 0 for some X?

Recently, Shripad M. Garge and Arghya Pramanik (arXiv:2202.08074)

have answered this question by constructing some examples.
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Some more bounds

Define ε(L, 1) := sup
x∈X

ε(X,L, x).

Ein-Lazarsfeld (1993): Let X be a smooth projective surface, and L be an

ample line bundle on X. Then

ε(X,L, x) ≥ 1

for “very general point” x ∈ X. Hence ε(L, 1) ≥ 1.

Lazarsfeld’s conjecture: Let X be a nonsingular projective variety and L
be an ample line bundle on X, then ε(L, 1) ≥ 1.

Oguiso (2002):

ε(L, 1) = ε(X,L, x) for very general x ∈ X.

ε(L) = ε(X,L, x) for “special” x ∈ X.

For any point x ∈ X, we have

0 ≤ ε(L) ≤ ε(X,L, x) ≤ ε(L, 1) ≤ n
√
Ln.
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What to look for

Guiding problems on Seshadri constants

Computing Seshadri constants.

Giving bounds on them.

Checking if they are irrational (Nagata Conjecture -1958).

Let us look at some existing results and applications in this context:

Let L be an ample and globally generated line bundle on a variety X,

then ε(X,L, x) ≥ 1 for all x ∈ X.

Characterization of Pn:

Bauer-Szemberg (2009): Let X be a smooth Fano variety of dimension n.

Then X = Pn ⇐⇒ ε(X,−KX , x) ≥ n+ 1 for some x ∈ X.

DiRocco (1999) has computed Seshadri constants of an ample line bundle

over a toric variety at any fixed point.

Ito (2014) has given bounds on Seshadri constants on an arbitrary toric

variety at any point.
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Seshadri constant for vector bundles

X : nonsingular complex projective variety, E : vector bundle on X

π : P(E)! X : projectivized bundle associated to E
ξ := OP(E)(1) : tautological line bundle on P(E)

A vector bundle E on X is ample (resp. nef) if the tautological line bundle ξ is

ample (resp. nef) on the projectivized bundle P(E).

Definition 2 (Hacon (2000), Fulger-Murayama (2021))

The Seshadri constant of a nef vector bundle E at x ∈ X is defined to be

ε(X, E , x) := inf
C⊂P(E)

ξ · C
multxπ∗C

,

where the infimum is taken over all curves C on P(E) that meet π−1(x) but

not completely contained in π−1(x).
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Some known results

Let E be an ample and globally generated vector bundle on a smooth

complex projective curve X, then for all x ∈ X

ε(X, E , x) ≥ 1.

Another Characterization of Pn: Let X be a smooth Fano variety of

dimension n with nef tangent bundle. Then

X = Pn ⇐⇒ ε(X,TX , x) > 0 for some x ∈ X,

(Fulger-Murayama (2021)).
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Some special cases

Hacon (2000): Let E be a nef vector bundle on a smooth complex

projective curve X, then for all x ∈ X

ε(X, E , x) = µmin(E),

where µmin(E) denotes the smallest slope of any quotient bundle of E .
Here slope of the vector bundle E is µ(E) = deg(E)

rank(E)
.

Fulger-Murayama (2021): If E = E1 ⊕ · · · ⊕ Er is a nef vector bundle on a

variety X, then for any x ∈ X

ε(X, E , x) = min
1≤ i≤r

{ε(X, Ei, x)} .

Fulger-Murayama (2021): E semistable discriminant zero nef vector

bundle of rank r on a variety X, then for all x ∈ X,

ε(X, E , x) = 1

r
ε(X, det(E), x).

Jyoti Dasgupta (IISER PUNE) Seshadri constants of equivariant vector bundles on toric varieties



Toric varieties

Definition 3

A toric variety X: A normal complex variety which contains a torus T ∼= (C∗)n

as a dense open subset such that:

T × T T

T ×X X

Example 4

(C∗)n, Cn and Pn.

Theorem 2 (Fundamental theorem for toric varieties)

The category of toric varieties is equivalent to the category of fans.

X∆  ! ∆X .
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Combinatorics of toric varieties

Combinatorial Data: M = Hom(T,C∗),

N = Hom (M,Z), fan ∆ in N ⊗ R ∼= Rn.

Cone σ ∈ ∆⇝ affine variety Uσ,

distinguished point xσ ∈ Uσ.

xσ is a torus fixed point ⇔ σ ∈ ∆ is

n-dimensional.

1-dimensional cone ρ ∈ ∆

⇝ invariant divisors Dρ.

(n− 1)-dimensional cone τ ∈ ∆

⇝ invariant curves V (τ) ∼= P1.

σ0

(1, 0)

•
σ1

(0, 1) •

σ2

(−1,−1)

•

Figure: Fan of P2
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Toric vector bundle

A T -equivariant vector bundle or toric vector bundle: A vector bundle

π : E ! X on X with a lift of the action of T on the total space E in such a

way that:

1 the projection map π is equivariant, i.e., for all e ∈ E and t ∈ T the

following diagram commutes:

T × E E

T × X X

(t, e) t · e

(t, π(e)) t · π(e)

Id × π π

2 the torus T acts linearly on the fibers.

Example 5

line bundle, tangent bundle, cotangent bundle
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Klyachko’s classification theorem

E : rank r toric vector bundle on X, E = E(1T ): the fiber at 1T ∈ T ⊂ X.

Klyachko (1990)

E  ! E ⊃ . . . ⊃ Eρ(i) ⊃ Eρ(i+ 1) ⊃ . . .0,

rays of ∆ satisfying compatibility condition:

for any σ ∈ ∆, there exists a T̂σ-grading E =
⊕

χ∈T̂σ

E[σ](χ), such that

Eρ(i) =
⊕

⟨χ,vρ⟩⩾i

E[σ](χ) for all ρ ∈ σ(1).

{ F-killin

2 {F-" iii., >[ 6 <
•

""

,

⇒

✗ ¥.it ✓

L
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Seshadri constant for toric vector bundle

X toric variety; x ∈ X a torus fixed point and E a nef toric vector bundle

on X. Then

ε(X, E , x) = min {µmin(E|C) | x ∈ C and C is an invariant curve}

(Hering-Mustaţă-Payne (2010)).

Goal: To compute Seshadri constant at arbitrary points.

Recall: to compute Seshadri constant at x ∈ X, we need to compute the ratios

ξ · C
multxπ∗C

, for all C ⊂ P(E).

Key ingredient: the description of the Mori cone NE(P(E)): the closed cone

of curves of the projectived bundle P(E).
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Mori Cone

X: toric variety; E : toric vector bundle on X; l1, . . . , lm: invariant curves in X.

P(E|li)
� � ηi //

πi

��

P(E)

π

��
li
� � // X

Since P(E|li) is a toric variety, there is an invariant fiber curve Σi and

invariant section curve Ωi such that NE(P(E|li) = Cone(Σi,Ωi).

Proposition 6 (Hering-Mustaţă-Payne (2010))

Take C0 := ηi(Σi) and Ci := ηi(Ωi), then the Mori cone is given by

NE(P(E)) =
{
a0C0 + · · ·+ amCm | ai ∈ R≥0 for i = 0, . . . ,m

}
.

In particular, NE(P(E) is a polyhedral cone.
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Seshadri constants of equivariant vector bundles on projective spaces

Theorem 7 ( - Khan - Aditya)

Let E be a “nice” nef equivariant vector bundle of rank r on the projective

space X = Pn (n ≥ 2). Then for any point x ∈ X, we have

ε(E , x) = min
1≤ i≤m

{µmin(E|li)} .

Example 8

Uniform bundle: a bundle of splitting type (a1, . . . , ar), i.e., for any line

l ⊂ Pn, we have

E|l ∼= OP1(a1)⊕ · · · ⊕ OP1(ar).

TPn is a uniform bundle with splitting type (2,1, . . .,1), hence for any

x ∈ Pn the Seshadri constant is given by

ε(TPn , x) = 1.
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Hirzebruch surface

☒
' r

Figure: Hc1,2 = P(OP1 ⊕OP1 (c1,2))

(−1, c1,2)

σ1

σ2

σ3 σ4

D′
1

D′
2

D2

D1

Figure: Fan for Hc1,2

We have D1 ≡ D′
1 ≡ f ,

D′
2 ≡ D2 − c1,2 D1 ≡ Γ2

The Picard group is

Pic(X) = ZD1 ⊕ ZD2.

The Nef cone is

Nef(X) = R≥0D1 ⊕ R≥0D2,

assuming c1,2 ≥ 0.

The Mori cone is

NE(X) = R≥0Γ2 ⊕ R≥0f .
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Seshadri constants of equivariant vector bundles on Hirzebruch surfaces

Theorem 9 ( - Khan- Aditya)

Let E be an equivariant nef vector bundle of rank r on the Hirzebruch surface

X2 = Hc1,2 satisfying the following conditions:

µmin(E|D1) = µmin(E|D′
1
) and µmin(E|D2) ≥ µmin(E|D1).

Then for any x ∈ X2, the Seshadri constant is given by:

ε(X2, E , x) =

min{µmin(E|D1), µmin(E|D′
2
)}, if x ∈ Γ2,

µmin(E|D1), if x /∈ Γ2.

Seshadri constants of line bundles on Hirzebruch surfaces have been computed

by Syzdek (2005), Garćıa (2006), Hanumanthu-Mukhopadhyay (2017).
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Example 10

Consider the tangent bundle E = TX2 on the Hirzebruch surface X2. Then the

associated filtrations (E, {Ei(j)}i=1,...,4; j∈Z) are given by:

Ei(j) =


C2 j ⩽ 0

Span (vi) j = 1

0 j > 1

.

E ⊗ O(D) is nef, where D = a1D1 + a2D2, a1 ≥ c1,2, a2 ≥ 0.

(E ⊗ O(D))|D′
1

= OP1 (a2) ⊕ OP1 (2 + a2), (E ⊗ O(D))|D1
= OP1 (a2) ⊕ OP1 (2 + a2),

(E ⊗ O(D))|D′
2

= OP1 (a1 − c1,2) ⊕ OP1 (2 + a1),

(E ⊗ O(D))|D2
= OP1 (a1 + c1,2 a2 + c1,2) ⊕ OP1 (a1 + c1,2 a2 + 2).

The Seshadri constant is given by

ε(E ⊗ O(D), x) =

min{a1 − c1,2, a2}, if x ∈ Γ2,

a2, if x /∈ Γ2.
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Bott towers

Bott towers are a particular class of nonsingular projective toric varieties. They

were constructed by Grossberg-Karshon (1994).

For an integer n ≥ 0, a Bott tower of height n

Xn −! Xn−1 −! . . . −! X2 −! X1 −! X0 = {point}

is defined inductively as an iterated P1–bundle so that

Xk = P(OXk−1 ⊕ Lk−1)

for a line bundle Lk−1 over Xk−1.

So X1 = P1 and X2 is a Hirzebruch surface and so on.
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Fan structure of a Bott tower

Let T ∼= (C∗)n be an algebraic torus with character lattice

M := Hom(T, C∗) ∼= Zn and the cocharacter lattice

N := HomZ(M,Z).

Let ∆n be an n-dimensional nonsingular complete fan in NR := N ⊗Z R

which defines the toric variety Xn under the action of the torus T . the

edges are

v1 = e1, · · · , vn = en,

vn+1 = −e1 + c1,2e2 + . . .+ c1,nen,

...

vn+i = −ei + ci,i+1ei+1 + . . .+ ci,nen, 1 ≤ i < n,

v2n = −en.

(0.1)

The maximal cones are generated by these edges such that no cone

contains both the edges vi and vn+i for i = 1, · · · , n.

Jyoti Dasgupta (IISER PUNE) Seshadri constants of equivariant vector bundles on toric varieties



Picard group of a Bott tower

It follows that any k-th stage Bott tower arises from a collection of

integers {ci,j}1≤i<j≤n as in (0.1). These integers are called the Bott

numbers of the given Bott tower.

We will restrict our attention to the case when the Bott numbers

{ci,j}{1≤i<j≤n} are all positive integers.

The Picard group of the Bott tower is

Pic(Xn) = ZD1 ⊕ · · · ⊕ ZDn ,

where Di denote the invariant prime divisor corresponding to the edge

vn+i.

Theorem 11 (Khan, (2019))

Let D =
∑k

i=1 aiDi be a Cartier divisor on Xn. Then D is ample

(respectively, nef) if and only if ai > 0 (respectively, ai ≥ 0) for all

i = 1, · · · , n.
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Construction of a special class of subvarieties X
(j)
i , 1 ≤ j ≤ i ≤ n

Fix a point x ∈ Xn. Set X
(1)
i := Xi for every 1 ≤ i ≤ n. For every

2 ≤ i ≤ n, consider

Xn Xn−1 . . . Xi Xi+1 . . . X2 X1

πi

πn

Define X
(2)
i := π−1

i (πn(x)) for i = 2, . . . , n. Note that x ∈ X
(2)
n .

Then

X
(2)
n X

(2)
n−1

. . . X
(2)
i X

(2)
i+1

. . . X
(2)
2 X

(2)
1

π2,i

π2,n is a

Bott tower.

For every 3 ≤ i ≤ n, define X
(3)
i := π−1

2,i (π2,n(x)).
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P1 = X
(n)
n ⊂ X

(n−1)
n ⊂

��

... ⊂ X
(3)
n ⊂

��

X
(2)
n ⊂

��

X
(1)
n

��
P1 = X

(n−1)
n−1

⊂ .... ⊂ X
(3)
n−1

⊂

��

X
(2)
n−1

⊂

��

X
(1)
n−1

��

...

.

.

.

��

.

.

.

��

.

.

.

��
P1 = X

(3)
3 ⊂ X

(2)
3 ⊂

��

X
(1)
3

��
P1 = X

(2)
2 ⊂ X

(1)
2

��
P1 = X

(1)
1

Proposition 12 (Biswas- -Hanumanthu-Khan)

Each vertical tower is a Bott tower with positive Bott numbers.
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Mori cone of Bott tower

Let us consider the composition of section maps

X
(i)
n X

(i)
n−1

. . . X
(i)
i+1 X

(i)
i

σi

for 1 ≤ i ≤ n.

Define Γ
(i)
n := σi(X

(i)
i ) ⊂ X

(i)
n .

We have Γ
(i)
n ⊂ X

(i)
n for each i and Γ

(n)
n = X

(n)
n .

We denote Γ
(1)
n also by Γn.

Proposition 13 (Biswas- -Hanumanthu-Khan)

The curves Γn, Γ
(2)
n , · · · , Γ(n)

n span NE(Xn), and they are dual to

D1, · · · , Dn.
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Seshadri constant on Bott towers

Theorem 14 (Biswas- -Hanumanthu-Khan)

The Seshadri constant of a nef line bundle L on Xn at a point x is given as

follows:

ε(Xn, L, x) = min
i

{
L · Γ(i)

n | x ∈ Γ(i)
n

}
.

Corollary 15

Let L ≡ a1D1 + . . .+ anDn be a nef line bundle on Xn.

ε(L, 1) = an.

ε(L) = min {a1, . . . , an}.

Theorem 16 ( - Khan- Aditya)

Let E be an equivariant nef vector bundle of rank r on X3 satisfying “certain”

conditions. Then the Seshadri constants of E at any x ∈ X3 are given by

ε(X3, E , x) = min
i

{
µmin(E|Γ(i)

3

) | x ∈ Γ
(i)
3

}
.
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Example 17

Let L ≡ D1 + 3D2 + 8D3 + 4D4 ∈ Pic(X4) and x ∈ X4. Then

ε(X4,L, x) =


1, if x ∈ Γ4,

3, if x /∈ Γ4, x ∈ Γ
(2)
4 ,

4, if x /∈ Γ4, x /∈ Γ
(2)
4 .
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Thank You
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