# Seshadri constants of equivariant vector bundles on toric varieties

Jyoti Dasgupta

**IISER** Pune

Toric Topology 2022

March 25, 2022

## Positivity of line bundles

"Positivity" of line bundles means that it has "many global sections".



## Positivity of line bundles

Framework: All varieties are nonsingular projective defined over  $\mathbb{C}$ .

Let  $\mathcal L$  be a line bundle on a variety X and  $s_0,s_1,\,\ldots\,s_N$  be a  $\mathbb C$ -basis for  $H^0(X,\mathcal L)$ . Then there is the associated **Kodaira map** 

$$\phi_{\mathcal{L}}: X \setminus Bs(\mathcal{L}) \longrightarrow \mathbb{P}^N$$
, defined by  $x \longmapsto [s_0(x): s_1(x): \ldots: s_N(x)]$ ,

where  $Bs(\mathcal{L}) := \mathbb{V}(s_0) \cap \ldots \cap \mathbb{V}(s_N)$  is the base locus of the line bundle  $\mathcal{L}$ .

- The line bundle  $\mathcal L$  is called globally generated if  $Bs(\mathcal L)=\emptyset$ . In addition, if  $\phi_{\mathcal L}$  defines a closed embedding  $\phi_{\mathcal L}: X \hookrightarrow \mathbb P^N$ , then  $\mathcal L$  is said to be very ample.
- The line bundle  $\mathcal L$  is called ample if there exists a positive integer m such that  $\mathcal L^{\otimes m}$  is very ample.

## Some criteria for ampleness

## **Theorem** 1 (Nakai-Moishezon-Kleiman criterion)

Let  $\mathcal L$  be a line bundle on a projective variety X. Then  $\mathcal L$  is ample if and only if

$$\mathcal{L}^{\dim V} \cdot V > 0$$

for every positive dimensional irreducible subvariety  $V \subseteq X$ .

■ A line bundle  $\mathcal{L}$  is called numerically effective (nef) if  $\mathcal{L} \cdot C \geq 0$  for all irreducible curves C in X

## Seshadri criterion for ampleness (1972)

A line bundle  $\mathcal L$  on X is ample if and only if for every point  $x\in X$  there exists a positive number  $\varepsilon$  such that  $\frac{\mathcal L\cdot C}{\operatorname{mult}_x C}\geq \varepsilon$  for all curves C passing through x.

Lets look for optimal values of  $\varepsilon!$ 

#### Seshadri constants

## Definition 1 (Demailly(1992))

Let  $\mathcal L$  be a nef line bundle on a complex projective variety X. For a point  $x\in X$ , the Seshadri constant of  $\mathcal L$  at x is defined to be

$$\varepsilon(X, \mathcal{L}, x) := \inf_{x \in C} \frac{\mathcal{L} \cdot C}{\text{mult}_x C}.$$

This numerical invariant measures the "local positivity" of the line bundle  $\mathcal L$  at the point x.

## Reformulation of Seshadri's ampleness criterion

A nef line bundle on X is ample if and only if  $\varepsilon(\mathcal{L}) := \inf_{x \in X} \varepsilon(X, \mathcal{L}, x) > 0$ .

## Original goal

## Fujita conjecture

Let X be a projective variety. Let  $\mathcal L$  be an ample line bundle on X and  $n=\dim(X).$ 

- $K_X + m\mathcal{L}$  is globally generated for  $m \geq n + 1$ .
- $K_X + m\mathcal{L}$  is very ample for  $m \geq n + 2$ .

The result is known for n=2 (Rider (1988)) and n=3 (Ein-Lazarsfeld).

## Demailly's approach

- If  $\varepsilon(X, \mathcal{L}, x) > \frac{n}{n+1}$  for all  $x \in X$  then  $K_X + (n+1)\mathcal{L}$  is globally generated.
- If  $\varepsilon(X, \mathcal{L}, x) > \frac{2n}{n+2}$  for all  $x \in X$  then  $K_X + (n+2)\mathcal{L}$  is very ample.

Miranda(1993): too optimistic to conclude Fujita conjecture.

## **Bounding Seshadri constants**

## Miranda's Example

Fix any  $\delta>0$ , then there exists a smooth surface X, a point  $x\in X$ , and an ample line bundle  $\mathcal L$  on X such that

$$\varepsilon(X, \mathcal{L}, x) < \delta.$$

- $\blacksquare \ \mathsf{Recall} \ \varepsilon(\mathcal{L}) \, := \, \inf_{x \in X} \varepsilon(X, \mathcal{L}, x).$
- lacksquare From Miranda's example, we know that  $\varepsilon(\mathcal{L})$  can be arbitrarily small.
- If  $\mathcal{L}$  is very ample, then  $\varepsilon(\mathcal{L}) \geq 1$ .
- Define  $\varepsilon(X) := \inf_{\mathcal{L} \text{ ample}} \varepsilon(\mathcal{L}).$
- Is  $\varepsilon(X) = 0$  for some X?

Recently, Shripad M. Garge and Arghya Pramanik (arXiv:2202.08074) have answered this question by constructing some examples.

#### Some more bounds

- $\blacksquare \text{ Define } \varepsilon(\mathcal{L},1) := \sup_{x \in X} \varepsilon(X,\mathcal{L},x).$
- Ein-Lazarsfeld (1993): Let X be a smooth projective surface, and  $\mathcal{L}$  be an ample line bundle on X. Then

$$\varepsilon(X, \mathcal{L}, x) \ge 1$$

for "very general point"  $x \in X$ . Hence  $\varepsilon(\mathcal{L}, 1) \geq 1$ .

- Lazarsfeld's conjecture: Let X be a nonsingular projective variety and  $\mathcal{L}$  be an ample line bundle on X, then  $\varepsilon(\mathcal{L}, 1) > 1$ .
- Oguiso (2002):
  - ullet  $\varepsilon(\mathcal{L},1)=\varepsilon(X,\mathcal{L},x)$  for very general  $x\in X$ .
  - ullet  $\varepsilon(\mathcal{L}) = \varepsilon(X, \mathcal{L}, x)$  for "special"  $x \in X$ .
- For any point  $x \in X$ , we have

$$0 \le \varepsilon(\mathcal{L}) \le \varepsilon(X, \mathcal{L}, x) \le \varepsilon(\mathcal{L}, 1) \le \sqrt[n]{\mathcal{L}^n}.$$

#### What to look for

## Guiding problems on Seshadri constants

- Computing Seshadri constants.
- Giving bounds on them.
- Checking if they are irrational (Nagata Conjecture -1958).

Let us look at some existing results and applications in this context:

- Let  $\mathcal{L}$  be an ample and globally generated line bundle on a variety X, then  $\varepsilon(X, \mathcal{L}, x) \geq 1$  for all  $x \in X$ .
- Characterization of  $\mathbb{P}^n$ :

Bauer-Szemberg (2009): Let X be a smooth Fano variety of dimension n. Then  $X = \mathbb{P}^n \iff \varepsilon(X, -K_X, x) \ge n+1$  for some  $x \in X$ .

- DiRocco (1999) has computed Seshadri constants of an ample line bundle over a toric variety at any fixed point.
- Ito (2014) has given bounds on Seshadri constants on an arbitrary toric variety at any point.

#### Seshadri constant for vector bundles

 ${\sf X}$  : nonsingular complex projective variety,  ${\cal E}$  : vector bundle on X

 $\pi:\mathbb{P}(\mathcal{E})\to X$  : projectivized bundle associated to  $\mathcal{E}$ 

 $\xi:=\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$  : tautological line bundle on  $\mathbb{P}(\mathcal{E})$ 

A vector bundle  $\mathcal{E}$  on X is ample (resp. nef) if the tautological line bundle  $\xi$  is ample (resp. nef) on the projectivized bundle  $\mathbb{P}(\mathcal{E})$ .

## Definition 2 (Hacon (2000), Fulger-Murayama (2021))

The Seshadri constant of a nef vector bundle  $\mathcal{E}$  at  $x \in X$  is defined to be

$$\varepsilon(X, \mathcal{E}, x) := \inf_{C \subset \mathbb{P}(\mathcal{E})} \frac{\xi \cdot C}{\operatorname{mult}_x \pi_* C},$$

where the infimum is taken over all curves C on  $\mathbb{P}(\mathcal{E})$  that meet  $\pi^{-1}(x)$  but not completely contained in  $\pi^{-1}(x)$ .

#### Some known results

■ Let  $\mathcal E$  be an **ample and globally generated** vector bundle on a smooth complex projective curve X, then for all  $x \in X$ 

$$\varepsilon(X, \mathcal{E}, x) \ge 1.$$

■ Another Characterization of  $\mathbb{P}^n$ : Let X be a smooth Fano variety of dimension n with nef tangent bundle. Then

$$X = \mathbb{P}^n \iff \varepsilon(X, \mathscr{T}_X, x) > 0 \text{ for some } x \in X,$$

(Fulger-Murayama (2021)).

## Some special cases

■ Hacon (2000): Let  $\mathcal E$  be a nef vector bundle on a smooth complex projective curve X, then for all  $x \in X$ 

$$\varepsilon(X, \mathcal{E}, x) = \mu_{min}(\mathcal{E}),$$

where  $\mu_{min}(\mathcal{E})$  denotes the smallest slope of any quotient bundle of  $\mathcal{E}$ . Here slope of the vector bundle  $\mathcal{E}$  is  $\mu(\mathcal{E}) = \frac{\deg(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}$ .

■ Fulger-Murayama (2021): If  $\mathcal{E} = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_r$  is a nef vector bundle on a variety X, then for any  $x \in X$ 

$$\varepsilon(X, \mathcal{E}, x) = \min_{1 \le i \le r} \left\{ \varepsilon(X, \mathcal{E}_i, x) \right\}.$$

■ Fulger-Murayama (2021):  $\mathcal{E}$  semistable discriminant zero nef vector bundle of rank r on a variety X, then for all  $x \in X$ ,

$$\varepsilon(X,\mathcal{E},x) = \frac{1}{r}\,\varepsilon(X,\det(\mathcal{E}),x).$$

#### Toric varieties

#### Definition 3

A toric variety X: A normal complex variety which contains a torus  $T \cong (\mathbb{C}^*)^n$  as a dense open subset such that:

$$\begin{array}{ccc}
T \times T & \longrightarrow & T \\
\downarrow & & \downarrow \\
T \times X & \longrightarrow & X
\end{array}$$

## Example 4

 $\blacksquare$   $(\mathbb{C}^*)^n$ ,  $\mathbb{C}^n$  and  $\mathbb{P}^n$ .

## Theorem 2 (Fundamental theorem for toric varieties)

The category of toric varieties is equivalent to the category of fans.

$$X_{\Delta} \longleftrightarrow \Delta_X$$
.

#### Combinatorics of toric varieties

Combinatorial Data:  $M = \operatorname{Hom}(T, \mathbb{C}^*)$ ,  $N = \operatorname{Hom}(M, \mathbb{Z})$ , fan  $\Delta$  in  $N \otimes \mathbb{R} \cong \mathbb{R}^n$ .

- Cone  $\sigma \in \Delta \leadsto$  affine variety  $U_{\sigma}$ , distinguished point  $x_{\sigma} \in U_{\sigma}$ .
- $x_{\sigma}$  is a torus fixed point  $\Leftrightarrow \sigma \in \Delta$  is n-dimensional.
- 1-dimensional cone  $\rho \in \Delta$   $\leadsto$  invariant divisors  $D_{\rho}$ .



Figure: Fan of  $\mathbb{P}^2$ 

#### Toric vector bundle

A T-equivariant vector bundle or toric vector bundle: A vector bundle  $\pi:\mathcal{E}\to X$  on X with a lift of the action of T on the total space  $\mathcal{E}$  in such a way that:

 $\blacksquare$  the projection map  $\pi$  is equivariant, i.e., for all  $e \in \mathcal{E}$  and  $t \in T$  the following diagram commutes:



 $\mathbf{2}$  the torus T acts linearly on the fibers.

## Example 5

line bundle, tangent bundle, cotangent bundle

## Klyachko's classification theorem

 $\mathcal{E}$ : rank r toric vector bundle on X,  $E = \mathcal{E}(1_T)$ : the fiber at  $1_T \in T \subset X$ .

## Klyachko (1990)

$$\mathcal{E} \longleftrightarrow E \supset \ldots \supset E^{\rho}(i) \supset E^{\rho}(i+1) \supset \ldots \mathbf{0},$$

rays of  $\Delta$  satisfying compatibility condition:

for any  $\sigma\in\Delta$ , there exists a  $\widehat{T}_{\sigma}$ -grading  $E=\bigoplus_{\chi\in\widehat{T}_{\sigma}}E^{[\sigma]}(\chi)$ , such that

$$E^{\rho}(i) = \bigoplus_{\langle \chi, v_{\rho} \rangle \geqslant i} E^{[\sigma]}(\chi) \text{ for all } \rho \in \sigma(1).$$



#### Seshadri constant for toric vector bundle

■ X toric variety;  $x \in X$  a **torus fixed point** and  $\mathcal{E}$  a nef toric vector bundle on X. Then

$$\varepsilon(X,\,\mathcal{E},\,x) \,=\, \min\left\{\mu_{min}(\mathcal{E}|_C) \,\mid\, x\in C \text{ and } C \text{ is an invariant curve}\right\}$$
 (Hering-Mustață-Payne (2010)).

Goal: To compute Seshadri constant at arbitrary points.

Recall: to compute Seshadri constant at  $x \in X$ , we need to compute the ratios

$$\frac{\xi \cdot C}{\operatorname{mult}_r \pi_* C}, \text{ for all } C \subset \mathbb{P}(\mathcal{E}).$$

**Key ingredient**: the description of the Mori cone  $\overline{\mathrm{NE}}(\mathbb{P}(\mathcal{E}))$ : the closed cone of curves of the projectived bundle  $\mathbb{P}(\mathcal{E})$ .

#### Mori Cone

X: toric variety;  $\mathcal{E}$ : toric vector bundle on X;  $l_1, \ldots, l_m$ : invariant curves in X.

$$\mathbb{P}(\mathcal{E}|l_i) \stackrel{\gamma_i}{\longrightarrow} \mathbb{P}(\mathcal{E})$$

$$\downarrow^{\pi_i} \qquad \qquad \downarrow^{\pi}$$

$$\downarrow^{l_i} \stackrel{}{\longrightarrow} X$$

■ Since  $\mathbb{P}(\mathcal{E}|_{l_i})$  is a toric variety, there is an invariant fiber curve  $\Sigma_i$  and invariant section curve  $\Omega_i$  such that  $\overline{\mathrm{NE}}(\mathbb{P}(\mathcal{E}|_{l_i}) = \mathsf{Cone}(\Sigma_i, \Omega_i)$ .

## Proposition 6 (Hering-Mustață-Payne (2010))

Take  $C_0 := \eta_i(\Sigma_i)$  and  $C_i := \eta_i(\Omega_i)$ , then the Mori cone is given by

$$\overline{\mathrm{NE}}(\mathbb{P}(\mathcal{E})) = \Big\{ a_0 C_0 + \dots + a_m C_m \mid a_i \in \mathbb{R}_{\geq 0} \text{ for } i = 0, \dots, m \Big\}.$$

In particular,  $\overline{\mathrm{NE}}(\mathbb{P}(\mathcal{E}))$  is a polyhedral cone.

## Seshadri constants of equivariant vector bundles on projective spaces

## Theorem 7 ( \_\_\_ - Khan - Aditya)

Let  $\mathcal E$  be a "nice" nef equivariant vector bundle of rank r on the projective space  $X=\mathbb P^n\ (n\geq 2)$ . Then for any point  $x\in X$ , we have

$$\varepsilon(\mathcal{E}, x) = \min_{1 \le i \le m} \left\{ \mu_{\min}(\mathcal{E}|l_i) \right\}.$$

## Example 8

■ Uniform bundle: a bundle of splitting type  $(a_1, \ldots, a_r)$ , i.e., for any line  $l \subset \mathbb{P}^n$ , we have

$$\mathcal{E}|_l \cong \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(a_r).$$

■  $\mathscr{T}_{\mathbb{P}^n}$  is a uniform bundle with splitting type (2,1, ...,1), hence for any  $x \in \mathbb{P}^n$  the Seshadri constant is given by

$$\varepsilon(\mathscr{T}_{\mathbb{P}^n}, x) = 1.$$

#### Hirzebruch surface



Figure:  $\mathcal{H}_{c_{1,2}} = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(c_{1,2}))$ 



Figure: Fan for  $\mathcal{H}_{c_{1,2}}$ 

- We have  $D_1 \equiv D_1' \equiv f$ ,  $D_2' \equiv D_2 c_{1,2} D_1 \equiv \Gamma_2$
- The Picard group is  $Pic(X) = \mathbb{Z}D_1 \oplus \mathbb{Z}D_2.$
- The Nef cone is  $\mathsf{Nef}(X) = \mathbb{R}_{\geq 0} D_1 \oplus \mathbb{R}_{\geq 0} D_2,$  assuming  $c_{1,2} \geq 0.$
- The Mori cone is  $\overline{\mathrm{NE}}(X) = \mathbb{R}_{\geq 0}\Gamma_2 \oplus \mathbb{R}_{\geq 0}f.$

## Seshadri constants of equivariant vector bundles on Hirzebruch surfaces

## Theorem 9 (\_\_ - Khan- Aditya)

Let  $\mathcal{E}$  be an equivariant nef vector bundle of rank r on the Hirzebruch surface  $X_2 = \mathcal{H}_{c_{1,2}}$  satisfying the following conditions:

$$\mu_{\min}(\mathcal{E}|_{D_1}) = \mu_{\min}(\mathcal{E}|_{D_1'}) \text{ and } \mu_{\min}(\mathcal{E}|_{D_2}) \geq \mu_{\min}(\mathcal{E}|_{D_1}).$$

Then for any  $x \in X_2$ , the Seshadri constant is given by:

$$\varepsilon(X_2,\mathcal{E},x) = \begin{cases} \min\{\mu_{\min}(\mathcal{E}|_{D_1}),\, \mu_{\min}(\mathcal{E}|_{D_2'})\}, & \text{if } x \in \Gamma_2, \\ \mu_{\min}(\mathcal{E}|_{D_1}), & \text{if } x \notin \Gamma_2. \end{cases}$$

Seshadri constants of line bundles on Hirzebruch surfaces have been computed by Syzdek (2005), García (2006), Hanumanthu-Mukhopadhyay (2017).

## Example 10

Consider the tangent bundle  $\mathcal{E}=\mathscr{T}_{X_2}$  on the Hirzebruch surface  $X_2$ . Then the associated filtrations  $(E,\{E^i(j)\}_{i=1,\dots,4;\,j\in\mathbb{Z}})$  are given by:

$$E^i(j) = \left\{ egin{array}{ll} \mathbb{C}^2 & j \leqslant 0 \ & & \ ext{Span } (v_i) & j = 1 \ & \ 0 & j > 1 \end{array} 
ight. .$$

$$\mathcal{E}\otimes\mathcal{O}(D)$$
 is nef, where  $D=a_1D_1+a_2D_2$ ,  $a_1\geq c_{1,2},\,a_2\geq 0$ .

$$\begin{split} \left. \left( \mathcal{E} \otimes \mathcal{O}(D) \right) \right|_{D_1'} &= \mathcal{O}_{\mathbb{P}^1}(a_2) \oplus \mathcal{O}_{\mathbb{P}^1}(2+a_2), \\ \left( \mathcal{E} \otimes \mathcal{O}(D) \right) \right|_{D_1} &= \mathcal{O}_{\mathbb{P}^1}(a_2) \oplus \mathcal{O}_{\mathbb{P}^1}(2+a_2), \\ \left( \mathcal{E} \otimes \mathcal{O}(D) \right) \right|_{D_2'} &= \mathcal{O}_{\mathbb{P}^1}(a_1-c_{1,2}) \oplus \mathcal{O}_{\mathbb{P}^1}(2+a_1), \\ \left( \mathcal{E} \otimes \mathcal{O}(D) \right) \right|_{D_2} &= \mathcal{O}_{\mathbb{P}^1}(a_1+c_{1,2} \ a_2+c_{1,2}) \oplus \mathcal{O}_{\mathbb{P}^1}(a_1+c_{1,2} \ a_2+2). \end{split}$$

The Seshadri constant is given by

$$\varepsilon(\mathcal{E}\otimes\mathcal{O}(D),x) = \begin{cases} \min\{a_1-c_{1,2},\,a_2\}, & \text{if } x\in\Gamma_2,\\ a_2, & \text{if } x\notin\Gamma_2. \end{cases}$$

#### **Bott towers**

Bott towers are a particular class of nonsingular projective toric varieties. They were constructed by Grossberg-Karshon (1994).

For an integer  $n \geq 0$ , a **Bott tower of height** n

$$X_n \longrightarrow X_{n-1} \longrightarrow \ldots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow X_0 = \{\mathsf{point}\}$$

is defined inductively as an iterated  $\mathbb{P}^1$ -bundle so that

$$X_k = \mathbb{P}(\mathcal{O}_{X_{k-1}} \oplus \mathcal{L}_{k-1})$$

for a line bundle  $\mathcal{L}_{k-1}$  over  $X_{k-1}$ .

So  $X_1 = \mathbb{P}^1$  and  $X_2$  is a Hirzebruch surface and so on.

#### Fan structure of a Bott tower

- Let  $T\cong (\mathbb{C}^*)^n$  be an algebraic torus with character lattice  $M:=\operatorname{Hom}(T,\mathbb{C}^*)\cong \mathbb{Z}^n$  and the cocharacter lattice  $N:=\operatorname{Hom}_{\mathbb{Z}}(M,\mathbb{Z}).$
- Let  $\Delta_n$  be an n-dimensional nonsingular complete fan in  $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$  which defines the toric variety  $X_n$  under the action of the torus T. the edges are

$$v_{1} = e_{1}, \dots, v_{n} = e_{n},$$

$$v_{n+1} = -e_{1} + c_{1,2}e_{2} + \dots + c_{1,n}e_{n},$$

$$\vdots$$

$$v_{n+i} = -e_{i} + c_{i,i+1}e_{i+1} + \dots + c_{i,n}e_{n}, 1 \leq i < n,$$

$$v_{2n} = -e_{n}.$$

$$(0.1)$$

■ The maximal cones are generated by these edges such that no cone contains both the edges  $v_i$  and  $v_{n+i}$  for  $i=1,\cdots,n$ .

## Picard group of a Bott tower

- It follows that any k-th stage Bott tower arises from a collection of integers  $\{c_{i,j}\}_{1 \le i < j \le n}$  as in (0.1). These integers are called the *Bott numbers* of the given Bott tower.
- We will restrict our attention to the case when the Bott numbers  $\{c_{i,j}\}_{\{1 \leq i < j \leq n\}}$  are **all positive integers**.
- The Picard group of the Bott tower is

$$\mathsf{Pic}(X_n) = \mathbb{Z}D_1 \oplus \cdots \oplus \mathbb{Z}D_n \,,$$

where  $D_i$  denote the invariant prime divisor corresponding to the edge  $v_{n+i}$ .

## Theorem 11 (Khan, \_ (2019))

Let  $D = \sum_{i=1}^k a_i D_i$  be a Cartier divisor on  $X_n$ . Then D is ample (respectively, nef) if and only if  $a_i > 0$  (respectively,  $a_i \geq 0$ ) for all  $i = 1, \dots, n$ .

# Construction of a special class of subvarieties $X_i^{(j)}, 1 \leq j \leq i \leq n$

Fix a point  $x \in X_n$ . Set  $X_i^{(1)} := X_i$  for every  $1 \le i \le n$ . For every  $2 \le i \le n$ , consider

$$X_n \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_i \longrightarrow X_{i+1} \longrightarrow \cdots \longrightarrow X_2 \longrightarrow X_1$$

 $\pi_n$  Define  $X_i^{(2)}:=\pi_i^{-1}(\pi_n(x))$  for  $i=2,\dots,n.$  Note that  $x\in X_n^{(2)}.$ 

Then

$$X_n^{(2)} \longrightarrow X_{n-1}^{(2)} \longrightarrow \cdots \longrightarrow X_i^{(2)} \xrightarrow{X_{i+1}^{(2)}} \cdots \longrightarrow X_2^{(2)} \xrightarrow{X_1^{(2)}} X_1^{(2)}$$

 $\pi_{2,n}$ 

is a

Bott tower.

For every  $3 \leq i \leq n$ , define  $X_i^{(3)} := \pi_{2,i}^{-1}(\pi_{2,n}(x))$ .

## Proposition 12 (Biswas- -Hanumanthu-Khan)

Each vertical tower is a Bott tower with positive Bott numbers.

#### Mori cone of Bott tower

Let us consider the composition of section maps

$$X_n^{(i)} \xrightarrow{X_{n-1}^{(i)}} \xrightarrow{\sigma_i} X_{i+1}^{(i)} \xrightarrow{X_i^{(i)}} X_i^{(i)}$$

for  $1 \leq i \leq n$ .

- Define  $\Gamma_n^{(i)} := \sigma_i(X_i^{(i)}) \subset X_n^{(i)}$ .
- lacksquare We have  $\Gamma_n^{(i)}\subset X_n^{(i)}$  for each i and  $\Gamma_n^{(n)}=X_n^{(n)}.$
- We denote  $\Gamma_n^{(1)}$  also by  $\Gamma_n$ .

## Proposition 13 (Biswas-\_\_-Hanumanthu-Khan)

The curves  $\Gamma_n$ ,  $\Gamma_n^{(2)}$ ,  $\cdots$ ,  $\Gamma_n^{(n)}$  span  $\overline{\mathrm{NE}}(X_n)$ , and they are dual to  $D_1, \cdots, D_n$ .

#### Seshadri constant on Bott towers

## Theorem 14 (Biswas-\_\_-Hanumanthu-Khan)

The Seshadri constant of a nef line bundle  $\mathcal{L}$  on  $X_n$  at a point x is given as follows:

$$\varepsilon(X_n, \mathcal{L}, x) = \min_{i} \left\{ \mathcal{L} \cdot \Gamma_n^{(i)} \mid x \in \Gamma_n^{(i)} \right\}.$$

## Corollary 15

Let  $\mathcal{L} \equiv a_1D_1 + \ldots + a_nD_n$  be a nef line bundle on  $X_n$ .

- $\varepsilon(\mathcal{L},1) = a_n.$
- $\bullet$   $\varepsilon(\mathcal{L}) = \min \{a_1, \ldots, a_n\}.$

## Theorem 16 (\_\_ - Khan- Aditya)

Let  $\mathcal{E}$  be an equivariant nef vector bundle of rank r on  $X_3$  satisfying "certain" conditions. Then the Seshadri constants of  $\mathcal{E}$  at any  $x \in X_3$  are given by

$$\varepsilon(X_3,\mathcal{E},x) = \, \min_{\mathbf{i}} \left\{ \mu_{\mathit{min}}(\mathcal{E}|_{\Gamma_3^{(i)}}) \, \mid \, x \in \Gamma_3^{(i)} \right\}.$$

#### Example 17

Let  $\mathcal{L} \equiv D_1 + 3D_2 + 8D_3 + 4D_4 \in Pic(X_4)$  and  $x \in X_4$ . Then

$$\varepsilon(X_4, \mathcal{L}, x) = \begin{cases} 1, & \text{if } x \in \Gamma_4, \\ 3, & \text{if } x \notin \Gamma_4, x \in \Gamma_4^{(2)}, \\ 4, & \text{if } x \notin \Gamma_4, x \notin \Gamma_4^{(2)}. \end{cases}$$

#### References

- Seshadri constants of equivariant vector bundles on toric varieties (with Bivas Khan and Aditya Subramaniam), J. Algebra, Volume 595, 38-68 (2022).
- Seshadri constants on Bott towers (with Indranil Biswas, Krishna Hanumanthu and Bivas Khan), J. Algebra (to appear).
- Toric vector bundles on Bott tower (with Bivas Khan), Bull. Sci. Math., 155(2019), 74-91.

#### References

- J.-P. Demailly, Singular Hermitian metrics on positive line bundles,
   Complex algebraic varieties (Bayreuth, 1990), 87–104, Lecture Notes in Math., 1507, Springer, Berlin, 1992.
- M. Fulger, and T. Murayama, Seshadri constants for vector bundles, J.
   Pure Appl. Algebra, 225 (2021), no. 4, 106559, 35pp.
- C. Hacon, Remarks on Seshadri constants on vector bundles, Ann. Inst.
   Fourier, Grenoble 50, 3, (2000), 767-780.
- M. Hering, M. Mustață and S. Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble) 60 (2010), 607–640.

# Thank You