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An almost complex manifold is a manifold M with a bundle map
J : TM → TM, called an almost complex structure, which
restricts to a linear complex structure on each tangent space.
(J2m = −IdTmM for all m ∈ M.)

Throughout this talk, any manifold is compact and almost
complex, and any group action on an almost complex manifold is
assumed to preserve the almost complex structure, that is,
dg ◦ J = J ◦ dg for all elements g of the group.

Let a k-dimensional torus T k act on M. Let F be a fixed
component of the action. Let dimF = 2m and let p be a point in
F . The normal space NpF of N at p decomposes into the sum of
n −m complex 1-dimensional vector spaces L1, · · · , Ln−m, where
on each Li the torus T k acts by multiplication by gwp,i for all
g ∈ T k , for some non-zero element wp,i of Zk , 1 ≤ i ≤ n −m.
These elements wp,1, · · · , wp,n−m are the same for all p ∈ F and
called weights of F .
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Rough idea: getting a multigraph

Let a torus T k act on M with isolated fixed points.

To each fixed point p we assign a vertex, also denoted by p.

Let w be a weight at a fixed point p.

Then there is another fixed point q that has weight −w . (p and q
are in the same isotropy submanifold fixed by an action of a
subgroup, whose elements fix w .)

We draw an edge from p to q, giving a label w to the edge.

This way we get a directed labeled multigraph.
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Definition
A labeled directed k-multigraph Γ is a set V of vertices, a set E
of edges, maps i : E → V and t : E → V giving the initial and
terminal vertices of each edge, and a map w : E → Zk (N+ if
k = 1) giving the label of each edge.
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Let w = (w1, · · · ,wk) be an element in Zk . By kerw we shall
mean the subgroup of T k whose elements fix w . That is,

kerw = {g = (g1, · · · , gk) ∈ T k ⊂ Ck | gw := gw1
1 · · · g

wk
k = 1}.

Definition
Let a k-dimensional torus T k act on a compact almost complex
manifold M with isolated fixed points. We say that a (labeled
directed k-)multigraph Γ = (V ,E ) describes M if the following
hold:

(i) The vertex set V is equal to the fixed point set MT k
.

(ii) The multiset of the weights at p is

{w(e) | i(e) = p} ∪ {−w(e) | t(e) = p} for all p ∈ MT k
.

(iii) For each edge e, the two endpoints i(e) and t(e) are in the
same component of the isotropy submanifold Mkerw(e).

kerw is a subgroup of T k and the set Mkerw of points in M that
are fixed by the kerw -action is a union of smaller dimensional
compact almost complex submanifolds of M.
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Proposition (J)

Let a k-dimensional torus T k act on a compact almost complex
manifold M with isolated fixed points. There exists a (labeled
directed k-)multigraph Γ describing M that has no self-loops.

Idea of proof - This was proved when k = 1 by Jang-Tolman.

For k > 1: take a weight w at some fixed point p, consider a fixed
component F of Mkerw , find a suitable subcircle S1 of T k , apply
the above result for S1-action on F , and replace the S1-weight by
T k -weight.
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Let T 2 act on CP3 by

(g1, g2) · [z0 : z1 : z2 : z3] = [z0 : g1z1 : g2
1 z2 : g2z3]

for all g = (g1, g2) ∈ T 2 ⊂ C2. The action has 4 fixed points,
p0 = [1 : 0 : 0 : 0], p1 = [0 : 1 : 0 : 0], p2 = [0 : 0 : 1 : 0], and
p3 = [0 : 0 : 0 : 1].
Near p2, using local coordinates ( z0z2 ,

z1
z2
, z3z2 ), T 2 acts near p2 by

(g1, g2) · ( z0z2 ,
z1
z2
, z3z2 ) = ( z0

g2
1 z2
, g1z1
g2
1 z2
, g2z3
g2
1 z2

) = (g−21
z0
z2
, g−11

z1
z2
, g−21 g2

z3
z2

)

and hence the weights at p2 are {(−2, 0), (−1, 0), (−2, 1)}. The
weights at the fixed points p0, p1, and p3 are {(1, 0), (2, 0), (0, 1)},
{(−1, 0), (1, 0), (−1, 1)}, and {(0,−1), (1,−1), (2,−1)},
respectively.
Note: This action is not GKM; the weights {(1, 0), (2, 0), (0, 1)} at
p0 are not pairwise linearly independent, but we can still associate
a multigraph.
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{(1, 0), (2, 0), (0, 1)}, {(−1, 0), (1, 0), (−1, 1)},
{(−2, 0), (−1, 0), (−2, 1)}, {(0,−1), (1,−1), (2,−1)}

p0

p1

p2

p3

(1, 0)

(2, 0)

(0, 1) (1, 0)

(−1, 1)

(−2, 1)

Figure: Multigraph describing CP3
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Ahara explicitly described circle actions on the Fano 3-folds V5 and
V22 with 4 fixed points that have weights

{1, 2, 3}, {−1, 1, a}, {−1,−a, 1}, {−1,−2,−3},

where a = 4 for V5 and a = 5 for V22. McDuff provided
compatible symplectic structures on these actions on V5 and V22.
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{1, 2, 3}, {−1, 1, a}, {−1,−a, 1}, {−1,−2,−3}

p1

p2

p3

p4

2 3

1

1 a

1

Figure: Multigraph describing Fano 3-fold
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Definition
An almost complex torus manifold is a 2n-dimensional compact
almost complex manifold equipped an effective T n-action that has
fixed points.

By definition, an almost complex torus manifold has only isolated
fixed points.

Theorem (J)

For an almost complex torus manifold, a multigraph describing it
has no multiple edges.

Idea of proof - Suppose there are two edges between p and q with
labels wp,1,wp,2. Because p and q are in the same component of
Mkerwp,1 and Mkerwp,2 , the weights wp,1, · · · ,wp,n at p and the
weights wq,1(= −wp,1),wq,2(= −wp,2),wq,3, · · · ,wq,n at q are
equal modulo wp,1 and wp,2. With the fact that wq,1, · · · ,wq,n

span Zn, this cannot happen.
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For a compact almost complex manifold, the Hirzebruch

χy -genus is the genus of the power series x(1+ye−x(1+y))

1−e−x(1+y) , and the
Todd genus is the genus of the power series x

1−e−x .

The power series for the Todd genus is obtained by taking y = 0 in
the power series for the Hirzebruch χy -genus.

Denote by χy (M) the Hirzebruch χy -genus of M.

The Hirzebruch χy -genus of M contains three topological
information; the Euler number (when y = −1), the Todd genus
(when y = 0), and the signature (when y = 1) of M.
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Let M be a 2n-dimensional compact almost complex manifold.

Let χy (M) =
∑n

i=0 ai (M) · (−y)i denote the Hirzebruch χy -genus
χy (M) of M, for some integers ai (M), 0 ≤ i ≤ n.

Note that the standard convention is χy (M) =
∑n

i=0 χ
i (M) · y i ;

hence ai (M) = (−1)iχi (M).

We shall use the coefficients ai (M) so that statements and proofs
become clearer. In this convention, if a torus acts on M with
isolated fixed points, each fixed point contributes some ai (M) by
+1.

If we use χi (M) then there is a sign issue that each isolated fixed
point contributes χi (M) by (−1)i for some i .
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Theorem (Kosniowski formula)

Let the circle act on a compact unitary manifold M. For each
connected component F of the fixed point set MS1

, let d(−,F )
and d(+,F ) be the numbers of negative weights and positive
weights in the normal bundle NF of F , respectively. Then the
Hirzebruch χy -genus χy (M) of M satisfies

χy (M) =
∑

F⊂MS1

(−y)d(−,F ) · χy (F ) =
∑

F⊂MS1

(−y)d(+,F ) · χy (F ).

Remark:
By the formula, ai (M) = an−i (M) for all i .
If the action on M has isolated fixed points, then ai (M) is equal to
the number of fixed points that have exactly i negative weights.
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Theorem (J)

Let M be a 2n-dimensional almost complex torus manifold. Then
ai (M) > 0 for 0 ≤ i ≤ n, where χy (M) =

∑n
i=0 ai (M) · (−y)i is

the Hirzebruch χy -genus of M. In particular, the Todd genus of M
is positive.

Idea of proof - by induction and the Kosniowski formula
Consider a characteristic submanifold F0, a real codimension 2
submanifold fixed by a subcircle S1 of T n.
There is a quotient action T n−1 = T n/S1 on F0. By inductive
hypothesis all coefficients of the Hirzebruch χy -genus of F0 are
positive; ai (F0) > 0 for 0 ≤ i ≤ n − 1.
By the Kosniowski formula

χy (M) =
∑

F⊂MS1

(−y)d(−,F ) · χy (F ) =
∑

F⊂MS1

(−y)d(+,F ) · χy (F )

the two equations imply that ai (M) > 0 for 0 ≤ i ≤ n.
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We will use this later.

Corollary

Let M be a 2n-dimensional almost complex torus manifold with
Euler number n + 1. Then M has exactly n + 1 fixed points and
ai (M) = 1 for 0 ≤ i ≤ n.

Proof.
The Euler number of M is equal to the sum of Euler numbers of
its fixed points. Since there are only isolated fixed points and the
Euler number of a point is 1, there are exactly n + 1 fixed points.
Each fixed point contributes some ai (M) by 1.
The Hirzebruch χy -genus of M with y = −1 is the Euler number
of M, which is n + 1 =

∑n
i=0 ai (M). By the theorem in the

previous slide ai (M) > 0 and hence ai (M) = 1 for all i . 2
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Problem of Petrie type

Petrie conjectured that if a homotopy CPn admits a non-trivial
S1-action, then it has the same Pontryagin class as CPn.

Conjecture (Petrie’s conjecture)

Let M be a 2n-dimensional compact oriented manifold which is
homotopy equivalent to the complex projective space CPn. If M
admits a non-trivial S1-action, the total Pontryagin class of M
agrees with that of CPn.

A weak version of the conjecture adds an assumption that the
action on M has isolated fixed points.
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Conjecture (Petrie’s conjecture)

If a homotopy CPn admits a non-trivial S1-action, its total
Pontryagin class agrees with that of CPn.

While the Petrie’s conjecture remains open in its full generality,
there are many partial or related results.

Petrie proved the conjecture if a homotopy CPn admits an action
of the torus T n instead of an S1-action.

Dejter confirmed the Petrie’s conjecture in dimension up to 6.

Musin confirmed it in dimension up to 8 (weak version).

James confirmed in dimension 8.

Dessai and Wilking reduced the dimension of a torus acting on a
manifold by showing that the conclusion of the Petrie’s conjecture
holds if a homotopy CPn admits a T k -action with 2n ≤ 8k − 4.
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The Petrie’s conjecture can be thought of as a particular case of
the following question.

Question
If a manifold equipped with a group action (torus action) shares
some information with CPn, then what other information does the
manifold share with CPn?
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Tsukada and Washiyama and Masuda proved that the conclusion
of the Petrie’s conjecture holds if a compact oriented S1-manifold
with the same cohomology as CPn has three or four fixed
components, respectively.

Hattori proved the Petrie’s conjecture under an assumption that a
compact unitary manifold has the same cohomology of CPn with
first Chern class (n + 1)x and admits an S1-action.

Tolman asked a symplectic analogue of the Petrie’s conjecture
that, if a compact symplectic manifold M with
H2i (M;R) ∼= H2i (CPn;R) for all i admits a Hamiltonian
S1-action, then H j(M;Z) ∼= H j(CPn;Z) for all j . In the same
paper Tolman answered this question affirmatively in dimension up
to 6, and the work of Godinho and Sabatini together with the work
of Tolman and the author confirmed it in dimension 8.

Motivated by the Petrie’s conjecture, Masuda and Suh asked if an
isomorphism between the cohomology rings of two torus manifolds
preserves the Pontryagin classes of them.
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For an almost complex torus manifold M, having the same Euler
number as CPn is enough to force M to share many other
invariants with CPn.
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Theorem (J)

Let M be a 2n-dimensional almost complex torus manifold with
Euler number n + 1. Then the following invariants of M and CPn

are equal. Here, CPn is equipped with a linear T n-action.

1. A (multi)graph describing it.

2. The weights at the fixed points.

3. All the Chern numbers.

4. Equivariant cobordism class.

5. The Hirzebruch χy -genus.

6. The Todd genus.

7. The signature.

If furthermore the action on M is equivariantly formal, the
following invariants of M and CPn are also equal.

(8) The rational equivariant cohomology.

(9) The Chern classes.
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I (1) implies (2) by definition.
I (2) implies (3) because Chern numbers are computed in terms

of the weights at the fixed points in the
Atiyah-Bott-Berline-Vergne localization formula.

I (3) implies (4) because two manifolds are equivariantly
cobordant if and only if they have the same Chern numbers.

I (3) implies (5) because the coefficients of the Hirzebruch
χy -genus can be computed as rational combinations of the
Chern numbers.

I (5) implies (6) and (7).
I Alternatively, having the Euler number n + 1 implies (5).
I (1) implies (8) if in addition the action on M is equivariantly

formal, because our graph is a GKM graph, and a GKM graph
determines the equivariantly cohomology of a given manifold.

I (9) follows from (1) and Proposition 3.4 of Goertsches,
Konstantis, and Zoller. Proposition 3.4 states that our graph
describing an almost complex torus manifold (which is called a
signed graph in their paper) determines its Chern classes if it
is equivariantly formal.
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By a linear T n-action on CPn we mean an action

g · [z0 : z1 : · · · : zn] = [z0 : ga1z1 : · · · : ganzn]

for all g ∈ T n ⊂ Cn, where a1, · · · , an form a basis of Zn. Let
a0 = (0, · · · , 0) ∈ Zn. The action has n + 1 fixed points
p0 = [1 : 0 : · · · : 0], · · · , pn = [0 : · · · : 0 : 1], and the weights at pi
are {aj − ai}j 6=i .
Now, we associate a (multi)graph describing this T n-action on
CPn. To each fixed point pi we assign a vertex (also denoted by
pi ). For i < j , the fixed points pi and pj are in the fixed component
[0 : · · · : 0 : zi : 0 : · · · : 0 : zj : 0 : · · · : 0] of Mker(aj−ai ), which is
the 2-sphere, on which the T n-action on CPn restricts to act by

g · [0 : · · · 0 : zi : 0 : · · · : 0 : zj : 0 : · · · : 0]
= [0 : · · · : 0 : gai zi : 0 : · · · : 0 : gaj zj : 0 : · · · : 0],

giving pi and pj weight aj − ai and ai − aj for this action,
respectively. Therefore, for i < j we draw an edge from pi to pj
and give the edge label aj − ai . Let Γ be a (multi)graph obtained.
Then Γ describes the linear T n-action on CPn.
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p0

p1

p2

p3

a1

a2

a3 a2 − a1

a3 − a1

a3 − a2

Figure: Graph describing a linear T 3-action on CP3
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Since χ(M) = n + 1, there are only finitely many fixed points, and
the Euler number of a point is 1, M has exactly n + 1 fixed points.

By the proposition, there is a multigraph Γ describing M that has
no multiple edges and no self-loops.

We label the n + 1 fixed points (vertices) by p0, p1, · · · , pn.

Since there are n + 1 vertices, each vertex has n edges, and there
are no multiple edges between any two vertices, for i 6= j , there is
exactly one edge between pi and pj .

For 0 < i < j , we may assume that an edge ei ,j between pi and pj
is from pi to pj (by reversing the direction and the label). Let wi ,j

be the label of ei ,j .

We will show that wi ,j = w0,j − w0,i for 0 < i < j , thus the graph
is the same as one describing the linear action on CPn.
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p0

p1

p2

p3

w0,1

w0,2

w0,3 w1,2

w1,3

w2,3

Figure: Graph describing M

We need to show if 0 < i < j , then wi ,j = w0,j − w0,i , so that this
graph agrees with a linear T n-action on CPn.
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Fix 0 < i < j . Let T = kerw0,i ∩ kerw0,j .

Since the weights w0,1, · · · , w0,n at p0 form a basis of Zn, T is an
(n − 2)-dimensional subtorus of T n.

Let F0 be a connected component of MT which contains p0.

Since T only fixes w0,i and w0,j among the weights at p0, it follows
that F0 is 4-dimensional and F0 contains p0, pi , and pj .
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If F0 contains another fixed point, then
a0(F0) + a1(F0) + a2(F0) ≥ 4 with ai (F0) > 0 and hence some
ai (F0) must be at least 2.

However, applying the Kosniowski formula for a suitable subcircle
of T n we have

χy (M) =
∑

F⊂MS

(−y)d(−,F ) · χy (F ),

where for each fixed component F ⊂ MS = MT , d(−,F ) is the
number of negative S-weights of F .

In χy (M) =
∑n

i=0 ai (M) · (−y)i , the above implies that some
ai (M) must be at least 2, but we know ai (M) = 1 for all i . Hence
F0 only contains p0, pi , and pj .
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p0

pi

pj

w0,i

wi ,j

w0,j

Figure: Graph describing T n-action on F0

Finally, for the T n-action on F0, we push-forward the equivariant
cohomology class 1 in the ABBV localization formula. It follows
that wi ,j = w0,j − w0,i .

0 =
∫
F0

1 =
∑

p∈FTn
0

1
eTn (NpF0)

=
∑

p∈FTn
0

1
eTn (TpF0)

=
1

w0,iw0,j
+ 1

(−w0,i )wi,j
+ 1

(−w0,j )(−wi,j )
.

Thus, the graph describing M agrees with the graph describing a
linear T n-action on CPn.
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Thank you very much for your
attention :)
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