Real Lagrangians in symplectic toric del Pezzo surfaces

Jiyeon Moon

Seoul National University

Toric Topology 2022 in Osaka March 25, 2022

Symplectic manifolds

Definition

A **symplectic manifold** is a smooth manifold M equipped with a closed nondegenerate 2-form ω called a symplectic form.

 \blacksquare A symplectic form measures a signed area of surfaces in M.

Example

- lacksquare $(\mathbb{C}^n, \omega_{\mathsf{std}} = \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\bar{z}_j)$
- $(S^2, \text{ any area form})$, surfaces with area form
- $(S^2 \times S^2, \omega \oplus \omega)$, product of two symplectic manifolds.
- Every symplectic manifold has even dimension.

Lagrangian submanifolds

Let (M^{2n}, ω) be a symplectic manifold.

Definition

A submanifold L of M is called **Lagrangian** if dim L=n and $\omega|_{TL}\equiv 0$.

- Maximally degenerated submanifold.
- How to find Lagrangian submanifolds?

Definition

- An anti-symplectic involution R of M is a diffeomorphism of M satisfying $R^2 = id_M$, $R^*\omega = -\omega$.
- The fixed point set of an antisymplectic involution is a Lagrangian submanifold. We call such a Lagrangian is real.

Examples

Consider $(S^2, \omega = d\theta \wedge dh)$ with $H(\theta, h) = h$.

Figure: A height function on a symplectic sphere

- $H^{-1}(c) \cong S^1$: Lagrangian for each $c \in (-1,1)$
- $H^{-1}(0)$ (equator) : real Lagrangian (: $R(\theta, h) = (\theta, -h)$)

Symplectic toric manifolds

We denote $\mathfrak t$ by the Lie algebra of a torus $\mathbb T$.

Definition (Hamiltonian \mathbb{T} -action on (M, ω))

A symplectic \mathbb{T} -action on (M,ω) is **Hamiltonian** if there is a map $\mu\colon M\to \mathfrak{t}^*$ such that

- $\omega(X_{\xi},\cdot) = -d\langle \mu, \xi \rangle$, X_{ξ} : the induced vector field of $\xi \in \mathfrak{t}$.
- ullet μ : invariant under the \mathbb{T} -action.

We call μ a **moment map** of the Hamiltonian \mathbb{T} -action.

Definition

- A symplectic toric manifold is a (compact connected) symplectic manifold (M^{2n}, ω) equipped with an effective Hamiltonian \mathbb{T}^n -action and a moment map $\mu \colon M \to \mathfrak{t}^*$.
- The image $\mu(M)$ of a moment map is called the moment polytope.

Examples of symplectic toric manifolds

Figure: Examples of symplectic toric manifolds and moment polytopes.

Delzant theorem

Theorem (Delzant, '90)

The map

$$(M^{2n}, \omega, \mu) \mapsto \mu(M)$$

gives a bijection from the set of symplectic toric manifolds onto the set of polytopes satisfies following properties:

- 1 There are n edges meeting at each vertex.
- 2 Each edges meeting at vertex has rational slope.
- **3** The set of slopes of edges meeting at vertex is a \mathbb{Z} -basis.

Such a polytope is called a **Dezant polytope**.

Meaning

Combinatorial perspective to the study of symplectic toric manifolds.

Equivariant antisymplectic involutions

 (M, ω, μ) : symplectic toric manifold with $\Delta := \mu(M)$.

Definition (Equivariant antisymplectic involution)

An antisymplectic involution R of (M, ω, μ) is **equivariant** if there is a group involution $R_{\mathbb{T}}$ of a torus \mathbb{T} such that

$$R(t \cdot x) = R_{\mathbb{T}}(t) \cdot R(x)$$

for all $x \in M$ and $t \in \mathbb{T}$.

- Symmetry of Δ : lattice preserving automorphism σ of \mathfrak{t}^* satisfying $\sigma(\Delta) = \Delta$.
- An equivariant antisymplectic involution induces a symmetry σ of Δ such that $\sigma^2 = id$ and $\mu \circ R = \sigma \circ \mu$.

Main theorem

Question

For a given involution σ of Δ ,

- lacksquare Find an equivariant antisymplectic involution R^σ and $R^\sigma_{\mathbb T}.$
- Reconstruct the real Lagrangian $Fix(R^{\sigma})$ from the data of the $Fix(\sigma) \subset \Delta$.

Theorem (Brendel-Kim-M)

Let (M, ω, μ) be a symplectic toric manifold and let σ be an involution on moment polytope $\Delta = \mu(M)$. Then

- The antisymplectic involution R^{σ} is induced by complex conjugation of $(\mathbb{C}^k, \omega_{std})$ and $\sigma^* = -(R^{\sigma}_{\mathbb{T}})^{-1}$.
- Roughly, $Fix(R^{\sigma})/Fix(R^{\sigma}_{\mathbb{T}}) = Fix(\sigma)$.

Real Lagrangians in a symplectic toric sphere

Consider $(S^2, \omega, \mu \colon S^2 \to \mathfrak{t}^*)$ with real lagrangians.

Figure: The fixed point set $\mu(L_1) = \{0\}$ of the symmetry σ on [-1,1]

The main application

Theorem (Brendel-Kim-M)

Let M be a toric symplectic del Pezzo surface and let L be a real Lagrangian of M. The diffeomorphism type of L is given as follows.

_	М				L = Fix(R)		
	$S^2 \times S^2$	<i>S</i> ²	T^2				
	X_0			$\mathbb{R}P^2$			
	X_1				$\mathbb{R}P^2\#\mathbb{R}P^2$		
	X_2			$\mathbb{R}P^2$		$\#_3 \mathbb{R} P^2$	
	<i>X</i> ₃	<i>S</i> ²	T^2		$\mathbb{R}P^2\#\mathbb{R}P^2$		$\#_4 \mathbb{R} P^2$

Toric symplectic del Pezzo surfaces

Definition

A symplectic manifold (M, ω) is **monotone** if $c_1(M) = \kappa \cdot [\omega]$ for some $\kappa > 0$.

Theorem (Li-Liu, Ohta-Ono, McDuff, Taubes)

Let (M,ω) be a monotone closed symplectic 4-manifold. Then

- $M \cong S^2 \times S^2$ or $X_k = \mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}$, $0 \leqslant k \leqslant 8$.
- The uniqueness of the monotone symplectic structure ω .

Such a (M, ω) is called a symplectic del Pezzo surface.

Theorem

A monotone toric structure exists only on $S^2 \times S^2$ and X_k for k = 0, 1, 2, 3, which are called **toric symplectic del Pezzo** surfaces.

Moment polytopes of toric symplectic del Pezzo surfaces

Figure: Moment polytopes of toric symplectic del Pezzo surfaces

Obstructions

Lemma

If L is an orientable Lagrangian of symplectic del Pezzo surfaces, then $L \cong S^2$ or T^2 .

Theorem (Smith inequality, Euler characteristic relation, '40)

Let $I: X \to X$ be an involution on a manifold X. Then we have

$$\mathit{dim} H_*(X;\mathbb{Z}_2) \geqslant \mathit{dim} H_*(\mathit{Fix}(I);\mathbb{Z}_2), \ \chi(X) \equiv \chi(\mathit{Fix}(I)) \ \mathit{mod} \ 2.$$

where χ denotes the Euler characteristic.

Lemma (Arnold, '71)

For an antisymplectic involution R on a symplectic manifold M^4 ,

$$[Fix(R)] \cdot R_*(\alpha) = \alpha \cdot R_*(\alpha), \text{ for all } \alpha \in H_2(M; \mathbb{Z}_2).$$

Candidates of real Lagrangians

We have a table of the candidates of the diffeomorphism types of real Lagrangians L of a toric symplectic del Pezzo surface M.

M

$$L = Fix(R)$$
 $S^2 \times S^2$
 S^2
 T^2
 X_0
 $\mathbb{R}P^2$
 $\mathbb{R}P^2$
 X_1
 $\mathbb{R}P^2$
 $\mathbb{R}P^2$
 X_2
 $\mathbb{R}P^2$
 $\mathbb{R}P^2$
 X_3
 S^2
 T^2
 $\mathbb{R}P^2 \# \mathbb{R}P^2$
 $\#_4 \mathbb{R}P^2$

We do not know which one can be realized. Hence, we shall construct antisymplectic involutions of M whose fixed set is what we want.

Existence of diffeomorphism types of real Lagrangians

Thank you for attention