Real Lagrangians in symplectic toric del Pezzo surfaces Jiyeon Moon Seoul National University Toric Topology 2022 in Osaka March 25, 2022 # Symplectic manifolds #### Definition A **symplectic manifold** is a smooth manifold M equipped with a closed nondegenerate 2-form ω called a symplectic form. \blacksquare A symplectic form measures a signed area of surfaces in M. ## Example - lacksquare $(\mathbb{C}^n, \omega_{\mathsf{std}} = \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\bar{z}_j)$ - $(S^2, \text{ any area form})$, surfaces with area form - $(S^2 \times S^2, \omega \oplus \omega)$, product of two symplectic manifolds. - Every symplectic manifold has even dimension. # Lagrangian submanifolds Let (M^{2n}, ω) be a symplectic manifold. #### Definition A submanifold L of M is called **Lagrangian** if dim L=n and $\omega|_{TL}\equiv 0$. - Maximally degenerated submanifold. - How to find Lagrangian submanifolds? #### Definition - An anti-symplectic involution R of M is a diffeomorphism of M satisfying $R^2 = id_M$, $R^*\omega = -\omega$. - The fixed point set of an antisymplectic involution is a Lagrangian submanifold. We call such a Lagrangian is real. ## **Examples** Consider $(S^2, \omega = d\theta \wedge dh)$ with $H(\theta, h) = h$. Figure: A height function on a symplectic sphere - $H^{-1}(c) \cong S^1$: Lagrangian for each $c \in (-1,1)$ - $H^{-1}(0)$ (equator) : real Lagrangian (: $R(\theta, h) = (\theta, -h)$) # Symplectic toric manifolds We denote $\mathfrak t$ by the Lie algebra of a torus $\mathbb T$. ## Definition (Hamiltonian \mathbb{T} -action on (M, ω)) A symplectic \mathbb{T} -action on (M,ω) is **Hamiltonian** if there is a map $\mu\colon M\to \mathfrak{t}^*$ such that - $\omega(X_{\xi},\cdot) = -d\langle \mu, \xi \rangle$, X_{ξ} : the induced vector field of $\xi \in \mathfrak{t}$. - ullet μ : invariant under the \mathbb{T} -action. We call μ a **moment map** of the Hamiltonian \mathbb{T} -action. #### Definition - A symplectic toric manifold is a (compact connected) symplectic manifold (M^{2n}, ω) equipped with an effective Hamiltonian \mathbb{T}^n -action and a moment map $\mu \colon M \to \mathfrak{t}^*$. - The image $\mu(M)$ of a moment map is called the moment polytope. # Examples of symplectic toric manifolds Figure: Examples of symplectic toric manifolds and moment polytopes. ### Delzant theorem #### Theorem (Delzant, '90) The map $$(M^{2n}, \omega, \mu) \mapsto \mu(M)$$ gives a bijection from the set of symplectic toric manifolds onto the set of polytopes satisfies following properties: - 1 There are n edges meeting at each vertex. - 2 Each edges meeting at vertex has rational slope. - **3** The set of slopes of edges meeting at vertex is a \mathbb{Z} -basis. Such a polytope is called a **Dezant polytope**. ## Meaning Combinatorial perspective to the study of symplectic toric manifolds. ## Equivariant antisymplectic involutions (M, ω, μ) : symplectic toric manifold with $\Delta := \mu(M)$. ### Definition (Equivariant antisymplectic involution) An antisymplectic involution R of (M, ω, μ) is **equivariant** if there is a group involution $R_{\mathbb{T}}$ of a torus \mathbb{T} such that $$R(t \cdot x) = R_{\mathbb{T}}(t) \cdot R(x)$$ for all $x \in M$ and $t \in \mathbb{T}$. - Symmetry of Δ : lattice preserving automorphism σ of \mathfrak{t}^* satisfying $\sigma(\Delta) = \Delta$. - An equivariant antisymplectic involution induces a symmetry σ of Δ such that $\sigma^2 = id$ and $\mu \circ R = \sigma \circ \mu$. #### Main theorem #### Question For a given involution σ of Δ , - lacksquare Find an equivariant antisymplectic involution R^σ and $R^\sigma_{\mathbb T}.$ - Reconstruct the real Lagrangian $Fix(R^{\sigma})$ from the data of the $Fix(\sigma) \subset \Delta$. ## Theorem (Brendel-Kim-M) Let (M, ω, μ) be a symplectic toric manifold and let σ be an involution on moment polytope $\Delta = \mu(M)$. Then - The antisymplectic involution R^{σ} is induced by complex conjugation of $(\mathbb{C}^k, \omega_{std})$ and $\sigma^* = -(R^{\sigma}_{\mathbb{T}})^{-1}$. - Roughly, $Fix(R^{\sigma})/Fix(R^{\sigma}_{\mathbb{T}}) = Fix(\sigma)$. ## Real Lagrangians in a symplectic toric sphere Consider $(S^2, \omega, \mu \colon S^2 \to \mathfrak{t}^*)$ with real lagrangians. Figure: The fixed point set $\mu(L_1) = \{0\}$ of the symmetry σ on [-1,1] ## The main application #### Theorem (Brendel-Kim-M) Let M be a toric symplectic del Pezzo surface and let L be a real Lagrangian of M. The diffeomorphism type of L is given as follows. | _ | М | | | | L = Fix(R) | | | |---|-----------------------|-----------------------|-------|-----------------|--------------------------------|-----------------------|-----------------------| | | $S^2 \times S^2$ | <i>S</i> ² | T^2 | | | | | | | X_0 | | | $\mathbb{R}P^2$ | | | | | | X_1 | | | | $\mathbb{R}P^2\#\mathbb{R}P^2$ | | | | | X_2 | | | $\mathbb{R}P^2$ | | $\#_3 \mathbb{R} P^2$ | | | | <i>X</i> ₃ | <i>S</i> ² | T^2 | | $\mathbb{R}P^2\#\mathbb{R}P^2$ | | $\#_4 \mathbb{R} P^2$ | | | | | | | | | | ## Toric symplectic del Pezzo surfaces #### Definition A symplectic manifold (M, ω) is **monotone** if $c_1(M) = \kappa \cdot [\omega]$ for some $\kappa > 0$. #### Theorem (Li-Liu, Ohta-Ono, McDuff, Taubes) Let (M,ω) be a monotone closed symplectic 4-manifold. Then - $M \cong S^2 \times S^2$ or $X_k = \mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}$, $0 \leqslant k \leqslant 8$. - The uniqueness of the monotone symplectic structure ω . Such a (M, ω) is called a symplectic del Pezzo surface. #### Theorem A monotone toric structure exists only on $S^2 \times S^2$ and X_k for k = 0, 1, 2, 3, which are called **toric symplectic del Pezzo** surfaces. # Moment polytopes of toric symplectic del Pezzo surfaces Figure: Moment polytopes of toric symplectic del Pezzo surfaces ## **Obstructions** #### Lemma If L is an orientable Lagrangian of symplectic del Pezzo surfaces, then $L \cong S^2$ or T^2 . ## Theorem (Smith inequality, Euler characteristic relation, '40) Let $I: X \to X$ be an involution on a manifold X. Then we have $$\mathit{dim} H_*(X;\mathbb{Z}_2) \geqslant \mathit{dim} H_*(\mathit{Fix}(I);\mathbb{Z}_2), \ \chi(X) \equiv \chi(\mathit{Fix}(I)) \ \mathit{mod} \ 2.$$ where χ denotes the Euler characteristic. #### Lemma (Arnold, '71) For an antisymplectic involution R on a symplectic manifold M^4 , $$[Fix(R)] \cdot R_*(\alpha) = \alpha \cdot R_*(\alpha), \text{ for all } \alpha \in H_2(M; \mathbb{Z}_2).$$ ## Candidates of real Lagrangians We have a table of the candidates of the diffeomorphism types of real Lagrangians L of a toric symplectic del Pezzo surface M. M $$L = Fix(R)$$ $S^2 \times S^2$ S^2 T^2 X_0 $\mathbb{R}P^2$ $\mathbb{R}P^2$ X_1 $\mathbb{R}P^2$ $\mathbb{R}P^2$ X_2 $\mathbb{R}P^2$ $\mathbb{R}P^2$ X_3 S^2 T^2 $\mathbb{R}P^2 \# \mathbb{R}P^2$ $\#_4 \mathbb{R}P^2$ We do not know which one can be realized. Hence, we shall construct antisymplectic involutions of M whose fixed set is what we want. # Existence of diffeomorphism types of real Lagrangians # Thank you for attention