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Hessenberg varieties

[n] = {1, 2, 3, . . . , n}
h : [n]→ [n] is called a Hessenberg function if it satisfies

h(1) ≤ h(2) ≤ · · · ≤ h(n) and h(i) ≥ i for ∀i.

A Hessenberg variety Hess(X, h) is a subvariety of a flag variety

Flag(Cn) =
{
V• = (V1 ⊂ · · · ⊂ Vn = C

n) dim Vi = i for ∀i
}
,

where X is an n × n-matrix and h is a Hessenberg function.

Hess(X, h) =
{
(V1 ⊂ · · · ⊂ Vn = C

n) ∈ Flag(Cn) XVi ⊂ Vh(i) for ∀i
}

We regard an n × n-matrix X as a linear hom. Cn → Cn.
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Examples of Hessenberg varieties

Hess(X, h) =
{
(V1 ⊂ · · · ⊂ Vn = C

n) ∈ Flag(Cn) XVi ⊂ Vh(i) for ∀i
}

We express h as a vector (h(1), h(2), . . . , h(n)).

When h = (n, n, . . . , n), Hess(X, h) = Flag(Cn) for any X.

When X has distinct eigenvalues, X is called regular semisimple.
In this case, we write S instead of X.

Hess(S , h) is called a regular semisimple Hessenberg variety.

Hess(S , h) � Hess(S ′, h)

When h = (2, 3, 4, . . . , n, n), Hess(S , h) is the permutohedral variety.

When h = (2, 3, 4, . . . , n, n) and N is regular nilpotent, Hess(N, h) is
the Peterson variety.
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Previous results and today’s question

Problem.

• Describe the cohomology ring H∗(Hess(S , h)) explicitly.

Previous results on H∗(Hess(S , h)).

▶ Sn-representation structure by Brosnan and Chow (2018)
▶ a recurrence formula to construct a basis as a module by

Chow, Hong, and Lee (arXiv:2107.00863)
▶ explicit description as a ring for h = (m, n, · · · , n) by Abe,

Horiguchi, and Masuda (2019)

Questions.

1. When H∗(Hess(S , h)) is generated by H2?

2. What are generators and relations in that case?
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Visualization of Hessenberg functions

It is useful to visualize a Hessenberg function h as follows.

h = (3, 3, 5, 6, 6, 6) h = (2, 2, 4, 5, 6, 6)
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Inclusion of these pictures means inclusion of Hessenberg var.’s.

When h(i) = i for some i < n,
Hess(S , h) �

⊔(
n
i

)
copies of Hess(S 1, h1) × Hess(S 2, h2).

We assume that Hess(S , h) is connected⇔ h(i) > i for i < n.
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GKM theory
Equivariant cohomology is useful to describe elements of H∗(Hess(S , h)).

T = {diagonal regular n × n-matrices}↷ Flag(Cn)

A regular semisimple Hessenberg variety Hess(S , h) has a T -action
as the restriction of this action on Flag(Cn).

The fixed point set is
{
(⟨ew(1)⟩ ⊂ ⟨ew(1), ew(2)⟩ ⊂ · · · ⊂ Cn) w ∈ Sn

}
.

When T ↷ Y, H∗T (Y) = H∗(ET ×T Y) the equivariant cohomology.

A regular semisimple Hessenberg variety has paving and is
equivariantly formal.

H∗T (Hess(S , h))→ H∗T (Hess(S , h)T ) �
⊕
w∈Sn

H∗(BT ) = Map(Sn,H∗(BT ))

This restriction is injective.
H∗(BT ) = Q[t1, . . . , tn]

H∗(Hess(S , h)) � H∗T (Hess(S , h))/(H2(BT ))
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Today’s Hessenberg functions

Theorem 1 (Ayzenberg-Masuda-S.)
If H∗(Hess(S , h)) is generated by the second cohomology,
then h = (a + 1, . . . , a + 1︸             ︷︷             ︸

a

, a + 2, a + 3, . . . , a + m + 1︸                            ︷︷                            ︸
m

, n, . . . , n).

n = 6, a = 2, m = 0
h = (3, 3, 6, 6, 6, 6)

rectangle case
(removed maximal one)

(n = 6, a = 1, m = 1)
n = 6, a = 0, m = 2
h = (2, 3, 6, 6, 6, 6)

lollipop case

n = 7, a = 2, m = 2
h = (3, 3, 4, 5, 7, 7, 7)
double lollipop case

@
@

@
@

@
@
@

@@

@
@

@
@

@
@
@

@@

@
@

@
@

@
@

@
@
@
@

7 / 14



Generators
Lemma 2 (cf. our paper arXiv:2203.11580)
For h = (a + 1, . . . , a + 1︸             ︷︷             ︸

a

, a + 2, a + 3, . . . , a + m + 1︸                            ︷︷                            ︸
m

, n, . . . , n),

H∗T (Hess(S , h)) is generated by H2(BT ) and the following elements:
xi − xi+1, yi, and τA for i ∈ [n] and A ⊂ [n] with a < |A| ≤ a + m.

They are defined by
xi(w) = tw(i) (w ∈ Sn)

yi(w) := ya,i(w) =

ti − tw(a+1) i ∈ {w(1), . . . ,w(a)}
0 otherwise

τA(w) =

tw(|A|) − tw(|A|+1) A = {w(1), . . . ,w(|A|)}
0 otherwisey∗i (w) := y∗a+2,i(w) =

tw(a+1) − ti i ∈ {w(a + 2), . . . ,w(n)}
0 otherwise


We have y∗i = xa+1 − ti + yi.
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Relations
Let xi, yi, and τA denote the corresponding ordinary cohomology
class also. H∗T (Hess(S , h))→ H∗(Hess(S , h))

Assume that a < n
2 .

@
@

@
@
@

@
@
@@

Lemma 3
In the rectangle case h = (a + 1, . . . , a + 1, n, . . . , n),
we have the following relations in H∗(Hess(S , h)).

Let I ⊂ [n], and define yI =
∏
i∈I

yi and y∗I =
∏
i∈I

y∗i .

(0) ei(x1, . . . , xn) = 0 (1 ≤ i ≤ n) come from Flag(Cn)

(1) yI = 0 (|I| = a + 1)

(1∗) y∗I = 0 (|I| = n − a)

(2)
∑
|I|=r

yI −
r∑

j=0

(
a − j
r − j

)
e j(x1, . . . , xa)(−xa+1)r− j = 0 (1 ≤ r ≤ a)

(3) y2
i + xa+1yi = 0 (1 ≤ i ≤ n)
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Poincaré series

@
@
@
@
@
@
@
@
@
@
@@

(2) are deformations of the relations of Flag(Ca).

e1(x1, . . . , xa) =
∑
i

yi + axa+1

e2(x1, . . . , xa) =
∑
|I|=2

yI + (a − 1)e1(x1, . . . , xa)xa+1 −
(
a−2

2

)
x2

a+1

= a polynomial in yi’s and xa+1

e3(x1, . . . , xa) = · · ·

Lemma 4
For h = (a + 1, . . . , a + 1, n, . . . , n),

Poin(Hess(S , h),
√

q) = [a]q![n − a − 1]q!
a∑

k=0

(
n
k

)
qk[n − 2k]q,

where [m]q =
1 − qm

1 − q
= 1 + q + q2 + · · · + qm−1 and [m]q! =

m∏
k=1

[k]q.

Remark that [m]q! = Poin(Flag(Cm),
√

q).
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The structure of H∗(Hess(S , h)) in the rectangle case

Since xi’s and yi’s are generators, we have a surjection.

Q[Xi,Yi | i ∈ [n]]→ H∗(Hess(S , h)), Xi 7→ xi, Yi → yi

Let I be the ideal of Q[Xi,Yi | i ∈ [n]] generated by the followings:

(0) ei(X1, . . . , Xn) (1 ≤ i ≤ n)

(1) YI (|I| = a + 1)

(1∗) Y∗I (|I| = n − a)

(2)
∑
|I|=r

YI −
r∑

j=0

(
a − j
r − j

)
e j(X1, . . . , Xa)(−Xa+1)r− j (1 ≤ r ≤ a)

(3) Y2
i + Xa+1Yi (1 ≤ i ≤ n)

where YI =
∏
i∈I

Yi and Y∗I =
∏
i∈I

(Yi + Xa+1).

Theorem 5 (Ayzenberg-Masuda-S.)
Q[Xi,Yi | i ∈ [n]]/I→ H∗(Hess(S , h)) is an isomorphism.
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Outline of the proof

Compare Hilb(Q[Xi,Yi | i ∈ [n]]/I,
√

q) and Poin(Hess(S , h),
√

q).

For any element of Q[Xi,Yi | i ∈ [n]]/I, find a good representative.

We can find it as a linear combination ofXia+1
a+1Xi1

1 · · · X
ia
a Xia+2

a+2 · · · X
in
n YI

|I| ≤ a, 0 ≤ ia+1 ≤ n,
1 ≤ k ≤ a ⇒ 0 ≤ ik ≤ a − k,

a + 2 ≤ k ≤ n ⇒ 0 ≤ ik ≤ n − k


by (0), (1), (2), and (3). When I = ∅, set Y∅ = 1.

Lemma 6
Let r = |I|. By (1∗), we have

Xn−2r
a+1 YI = −

r−1∑
k=0

(
a−k
r−k

)(
n−r−k

r−k

)Xn−r−k
a+1 ek(Yi | i ∈ I)
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Furthermore
In the lollipop case h = (2, 3, . . . ,m + 1, n, . . . , n),

Poin(Hess(S , h);
√

q) = [n − m − 1]q!

[n]q + q
m∑

k=1

(
n
k

)
Ak(q)[n − k − 1]q

,
where Ak(q) is the Eulerian polynomial of degree k.
Ak(q) = Poin(Permk,

√
q)

We have the following relations in H∗(Hess(S , h)):
(0) ei(x1, . . . , xn) = 0 (1 ≤ i ≤ n)

(L1) ei(x1, . . . , x|A|)τA = 0 (1 ≤ i ≤ |A|)
(L2) τAτB = 0 (A 1 B or A 2 B)
(L3)

∑
|A|=k

τA = xk − xk+1 (a < k ≤ m)

(L4)

 ∑
p∈A⊊B

τA −
∑

q∈A⊊B

τA

 τB = 0 (p, q ∈ B)

(L5) τBhn−|B|−1(x|B|, x|B|+1) −
∏

i∈[n]\B

x|B| +
∑

i∈A, |A|<|B|
τA

 = 0
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Furthermore...

In the double lollipop case h = (a + 1, . . . , a + 1, a + 2, . . . , a + m + 1, n, . . . , n),

Poin(Hess(S , h);
√

q) = [a]q![n − a − m − 1]q!

 a∑
k=0

(
n
k

)
qk[n − 2k]q

+q
m∑

l=1

(
n

a + l

)
[n − a − l − 1]q

[a + l]q + q
l−1∑
k=1

(
a + l

k

)
Ak(q)[a + l − k − 1]q




We have the following relations in H∗(Hess(S , h)):
(0), (1), (1∗), (2), (3), (L1)–(L5) with ya,i =

∑
i∈A, |A|≤a τA,

(L5∗) τChk−1(x|C|, x|C|+1) −
∏
i∈C

−yi −
∑

i∈A, a<|A|≤|C|
τA

 = 0

(L6) τB

x|B| + yi +
∑

i∈A⊊B, a<|A|
τA

 = 0 (i ∈ B)
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