Regular semisimple Hessenberg varieties whose cohomology rings are generated by elements of degree 2

Takashi Sato

Kyoto University RIMS
March 24, 2022

Hessenberg varieties

$[n]=\{1,2,3, \ldots, n\}$
$h:[n] \rightarrow[n]$ is called a Hessenberg function if it satisfies

$$
h(1) \leq h(2) \leq \cdots \leq h(n) \quad \text { and } \quad h(i) \geq i \text { for } \forall i .
$$

A Hessenberg variety $\operatorname{Hess}(X, h)$ is a subvariety of a flag variety

$$
\operatorname{Flag}\left(\mathbb{C}^{n}\right)=\left\{V_{\bullet}=\left(V_{1} \subset \cdots \subset V_{n}=\mathbb{C}^{n}\right) \mid \operatorname{dim} V_{i}=i \text { for } \forall i\right\}
$$

where X is an $n \times n$-matrix and h is a Hessenberg function.

$$
\operatorname{Hess}(X, h)=\left\{\left(V_{1} \subset \cdots \subset V_{n}=\mathbb{C}^{n}\right) \in \operatorname{Flag}\left(\mathbb{C}^{n}\right) \mid X V_{i} \subset V_{h(i)} \text { for } \forall i\right\}
$$

We regard an $n \times n$-matrix X as a linear hom. $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Examples of Hessenberg varieties

$$
\operatorname{Hess}(X, h)=\left\{\left(V_{1} \subset \cdots \subset V_{n}=\mathbb{C}^{n}\right) \in \operatorname{Flag}\left(\mathbb{C}^{n}\right) \mid X V_{i} \subset V_{h(i)} \text { for } \forall i\right\}
$$

We express h as a vector $(h(1), h(2), \ldots, h(n))$.
When $h=(n, n, \ldots, n), \operatorname{Hess}(X, h)=\operatorname{Flag}\left(\mathbb{C}^{n}\right)$ for any X.
When X has distinct eigenvalues, X is called regular semisimple. In this case, we write S instead of X.
$\operatorname{Hess}(S, h)$ is called a regular semisimple Hessenberg variety.

$$
\operatorname{Hess}(S, h) \cong \operatorname{Hess}\left(S^{\prime}, h\right)
$$

When $h=(2,3,4, \ldots, n, n), \operatorname{Hess}(S, h)$ is the permutohedral variety.
When $h=(2,3,4, \ldots, n, n)$ and N is regular nilpotent, $\operatorname{Hess}(N, h)$ is the Peterson variety.

Previous results and today's question

Problem.

- Describe the cohomology ring $H^{*}(\operatorname{Hess}(S, h))$ explicitly.

Previous results on $H^{*}(\operatorname{Hess}(S, h))$.

- \mathfrak{S}_{n}-representation structure by Brosnan and Chow (2018)
- a recurrence formula to construct a basis as a module by Chow, Hong, and Lee (arXiv:2107.00863)
- explicit description as a ring for $h=(m, n, \cdots, n)$ by Abe, Horiguchi, and Masuda (2019)

Questions.

1. When $H^{*}(\operatorname{Hess}(S, h))$ is generated by H^{2} ?
2. What are generators and relations in that case?

Visualization of Hessenberg functions

It is useful to visualize a Hessenberg function h as follows.

$h=(3,3,5,6,6,6)$

$h=(2,2,4,5,6,6)$

Inclusion of these pictures means inclusion of Hessenberg var.'s.
When $h(i)=i$ for some $i<n$,
$\operatorname{Hess}(S, h) \cong \sqcup\binom{n}{i} \operatorname{copies}$ of $\operatorname{Hess}\left(S_{1}, h_{1}\right) \times \operatorname{Hess}\left(S_{2}, h_{2}\right)$.
We assume that $\operatorname{Hess}(S, h)$ is connected $\Leftrightarrow h(i)>i$ for $i<n$.

GKM theory

Equivariant cohomology is useful to describe elements of $H^{*}(\operatorname{Hess}(S, h))$.
$T=\{$ diagonal regular $n \times n$-matrices $\} \curvearrowright \operatorname{Flag}\left(\mathbb{C}^{n}\right)$
A regular semisimple Hessenberg variety $\operatorname{Hess}(S, h)$ has a T-action as the restriction of this action on $\operatorname{Flag}\left(\mathbb{C}^{n}\right)$.

The fixed point set is $\left\{\left(\left\langle\boldsymbol{e}_{w(1)}\right\rangle \subset\left\langle\boldsymbol{e}_{w(1)}, \boldsymbol{e}_{w(2)}\right\rangle \subset \cdots \subset \mathbb{C}^{n}\right) \mid w \in \mathbb{S}_{n}\right\}$.
When $T \curvearrowright Y, H_{T}^{*}(Y)=H^{*}\left(E T \times_{T} Y\right)$ the equivariant cohomology.
A regular semisimple Hessenberg variety has paving and is equivariantly formal.
$H_{T}^{*}(\operatorname{Hess}(S, h)) \rightarrow H_{T}^{*}\left(\operatorname{Hess}(S, h)^{T}\right) \cong \bigoplus_{w \in \Im_{n}} H^{*}(B T)=\operatorname{Map}\left(\Im_{n}, H^{*}(B T)\right)$
This restriction is injective.

$$
\begin{aligned}
H^{*}(B T)= & \mathbb{Q}\left[t_{1}, \ldots, t_{n}\right] \\
& H^{*}(\operatorname{Hess}(S, h)) \cong H_{T}^{*}(\operatorname{Hess}(S, h)) /\left(H^{2}(B T)\right)
\end{aligned}
$$

Today's Hessenberg functions

Generators

Lemma 2 (cf. our paper arXiv:2203.11580)

For $h=(\underbrace{a+1, \ldots, a+1}_{a}, \underbrace{a+2, a+3, \ldots, a+m+1}_{m}, n, \ldots, n)$,
$H_{T}^{*}(\operatorname{Hess}(S, h))$ is generated by $H^{2}(B T)$ and the following elements: $x_{i}-x_{i+1}, y_{i}$, and τ_{A} for $i \in[n]$ and $A \subset[n]$ with $a<|A| \leq a+m$.

They are defined by

$$
\begin{aligned}
& x_{i}(w)=t_{w(i)} \\
& y_{w}\left(w \in \Xi_{n}\right) \\
& y_{i}(w):=y_{a, i}(w)= \begin{cases}t_{i}-t_{w(a+1)} & i \in\{w(1), \ldots, w(a)\} \\
0 & \text { otherwise }\end{cases} \\
& \tau_{A}(w)= \begin{cases}t_{w(A \mid)}-t_{w(A \mid+1)} & A=\{w(1), \ldots, w(|A|)\} \\
0 & \text { otherwise }\end{cases} \\
&\left(y_{i}^{*}(w):=y_{a+2, i}^{*}(w)\right.= \begin{cases}t_{w(a+1)}-t_{i} & i \in\{w(a+2), \ldots, w(n)\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We have $y_{i}^{*}=x_{a+1}-t_{i}+y_{i}$.

Relations

Let x_{i}, y_{i}, and τ_{A} denote the corresponding ordinary cohomology class also. $H_{T}^{*}(\operatorname{Hess}(S, h)) \rightarrow H^{*}(\operatorname{Hess}(S, h))$
Assume that $a<\frac{n}{2}$.
Lemma 3
In the rectangle case $h=(a+1, \ldots, a+1, n, \ldots, n)$, we have the following relations in $H^{*}(\operatorname{Hess}(S, h))$.

Let $I \subset[n]$, and define $y_{I}=\prod_{i \in I} y_{i}$ and $y_{I}^{*}=\prod_{i \in I} y_{i}^{*}$.

(0) $e_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \quad(1 \leq i \leq n) \quad$ come from Flag $\left(\mathbb{C}^{n}\right)$
(1) $y_{I}=0 \quad(|I|=a+1)$
$\left(1^{*}\right) y_{I}^{*}=0 \quad(|I|=n-a)$
(2) $\sum_{|I|=r} y_{I}-\sum_{j=0}^{r}\binom{a-j}{r-j} e_{j}\left(x_{1}, \ldots, x_{a}\right)\left(-x_{a+1}\right)^{r-j}=0 \quad(1 \leq r \leq a)$
(3) $y_{i}^{2}+x_{a+1} y_{i}=0 \quad(1 \leq i \leq n)$

Poincaré series

(2) are deformations of the relations of $\operatorname{Flag}\left(\mathbb{C}^{a}\right)$.

$$
\begin{aligned}
e_{1}\left(x_{1}, \ldots, x_{a}\right) & =\sum_{i} y_{i}+a x_{a+1} \\
e_{2}\left(x_{1}, \ldots, x_{a}\right) & =\sum_{|I|=2} y_{I}+(a-1) e_{1}\left(x_{1}, \ldots, x_{a}\right) x_{a+1}-\binom{a-2}{2} x_{a+1}^{2} \\
& =\text { a polynomial in } y_{i} \text { 's and } x_{a+1} \\
e_{3}\left(x_{1}, \ldots, x_{a}\right) & =\cdots
\end{aligned}
$$

Lemma 4
For $h=(a+1, \ldots, a+1, n, \ldots, n)$,

$$
\operatorname{Poin}(\operatorname{Hess}(S, h), \sqrt{q})=[a]_{q}![n-a-1]_{q}!\sum_{k=0}^{a}\binom{n}{k} q^{k}[n-2 k]_{q},
$$

where $[m]_{q}=\frac{1-q^{m}}{1-q}=1+q+q^{2}+\cdots+q^{m-1}$ and $[m]_{q}!=\prod_{k=1}^{m}[k]_{q}$.
Remark that $[m]_{q}!=\operatorname{Poin}\left(\operatorname{Flag}\left(\mathbb{C}^{m}\right), \sqrt{q}\right)$.

The structure of $H^{*}(\operatorname{Hess}(S, h))$ in the rectangle case

Since x_{i} 's and y_{i} 's are generators, we have a surjection.

$$
\mathbb{Q}\left[X_{i}, Y_{i} \mid i \in[n]\right] \rightarrow H^{*}(\operatorname{Hess}(S, h)), \quad X_{i} \mapsto x_{i}, Y_{i} \rightarrow y_{i}
$$

Let \mathfrak{I} be the ideal of $\mathbb{Q}\left[X_{i}, Y_{i} \mid i \in[n]\right]$ generated by the followings:
(0) $e_{i}\left(X_{1}, \ldots, X_{n}\right) \quad(1 \leq i \leq n)$
(1) $Y_{I} \quad(|I|=a+1)$
(1*) $Y_{I}^{*} \quad(|I|=n-a)$
(2) $\sum_{|I|=r} Y_{I}-\sum_{j=0}^{r}\binom{a-j}{r-j} e_{j}\left(X_{1}, \ldots, X_{a}\right)\left(-X_{a+1}\right)^{r-j} \quad(1 \leq r \leq a)$
(3) $Y_{i}^{2}+X_{a+1} Y_{i} \quad(1 \leq i \leq n)$
where $Y_{I}=\prod_{i \in I} Y_{i}$ and $Y_{I}^{*}=\prod_{i \in I}\left(Y_{i}+X_{a+1}\right)$.
Theorem 5 (Ayzenberg-Masuda-S.)
$\mathbb{Q}\left[X_{i}, Y_{i} \mid i \in[n]\right] / \mathfrak{I} \rightarrow H^{*}(\operatorname{Hess}(S, h))$ is an isomorphism.

Outline of the proof

Compare $\operatorname{Hilb}\left(\mathbb{Q}\left[X_{i}, Y_{i} \mid i \in[n]\right] / \Im, \sqrt{q}\right)$ and $\operatorname{Poin}(\operatorname{Hess}(S, h), \sqrt{q})$.
For any element of $\mathbb{Q}\left[X_{i}, Y_{i} \mid i \in[n]\right] / \mathfrak{I}$, find a good representative.
We can find it as a linear combination of

$$
\left\{\begin{array}{c|c}
X_{a+1}^{i_{a+1}} X_{1}^{i_{1}} \cdots X_{a}^{i_{a}} X_{a+2}^{i_{a+2}} \cdots X_{n}^{i_{n}} Y_{I} & |I| \leq a, 0 \leq i_{a+1} \leq n \\
1 \leq k \leq a \Rightarrow 0 \leq i_{k} \leq a-k, \\
a+2 \leq k \leq n \Rightarrow 0 \leq i_{k} \leq n-k
\end{array}\right\}
$$

by (0), (1), (2), and (3). When $I=\emptyset$, set $Y_{\emptyset}=1$.
Lemma 6
Let $r=|I|$. By $\left(1^{*}\right)$, we have

$$
X_{a+1}^{n-2 r} Y_{I}=-\sum_{k=0}^{r-1} \frac{\binom{a-k}{r-k}}{\binom{n-r-k}{r-k}} X_{a+1}^{n-r-k} e_{k}\left(Y_{i} \mid i \in I\right)
$$

Furthermore

In the lollipop case $h=(2,3, \ldots, m+1, n, \ldots, n)$,
$\operatorname{Poin}(\operatorname{Hess}(S, h) ; \sqrt{q})=[n-m-1]_{q}!\left([n]_{q}+q \sum_{k=1}^{m}\binom{n}{k} A_{k}(q)[n-k-1]_{q}\right)$,
where $A_{k}(q)$ is the Eulerian polynomial of degree k.
$A_{k}(q)=\operatorname{Poin}\left(\operatorname{Perm}_{k}, \sqrt{q}\right)$
We have the following relations in $H^{*}(\operatorname{Hess}(S, h))$:
(0) $e_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \quad(1 \leq i \leq n)$
(L1) $e_{i}\left(x_{1}, \ldots, x_{|A|}\right) \tau_{A}=0 \quad(1 \leq i \leq|A|)$
(L2) $\tau_{A} \tau_{B}=0 \quad(A \not \subset B$ or $A \not \supset B)$
(L3) $\sum_{|A|=k} \tau_{A}=x_{k}-x_{k+1} \quad(a<k \leq m)$
(L4) $\left(\sum_{p \in A \subseteq B} \tau_{A}-\sum_{q \in A \subsetneq B} \tau_{A}\right) \tau_{B}=0 \quad(p, q \in B)$
(L5) $\tau_{B} h_{n-|B|-1}\left(x_{|B|}, x_{|B|+1}\right)-\prod_{i \in[n] \backslash B}\left(x_{|B|}+\sum_{i \in A,|A|<|B|} \tau_{A}\right)=0$

Furthermore...

In the double lollipop case $h=(a+1, \ldots, a+1, a+2, \ldots, a+m+1, n, \ldots, n)$,
$\operatorname{Poin}(\operatorname{Hess}(S, h) ; \sqrt{q})=[a]_{q}![n-a-m-1]_{q}!\left(\sum_{k=0}^{a}\binom{n}{k} q^{k}[n-2 k]_{q}\right.$

$$
\left.+q \sum_{l=1}^{m}\binom{n}{a+l}[n-a-l-1]_{q}\left([a+l]_{q}+q \sum_{k=1}^{l-1}\binom{a+l}{k} A_{k}(q)[a+l-k-1]_{q}\right)\right)
$$

We have the following relations in $H^{*}(\operatorname{Hess}(S, h))$:
(0), (1), (1*), (2), (3), (L1)-(L5) with $y_{a, i}=\sum_{i \in A,|A| \leq a} \tau_{A}$,
(L5*) $\tau_{C} h_{k-1}\left(x_{|C|}, x_{|C|+1}\right)-\prod_{i \in C}\left(-y_{i}-\sum_{i \in A, a<|A| \leq|C|} \tau_{A}\right)=0$
(L6) $\tau_{B}\left(x_{|B|}+y_{i}+\sum_{i \in A \subsetneq B, a<|A|} \tau_{A}\right)=0 \quad(i \in B)$

