On cohomology of (quasi)toric manifolds over a vertex cut of a finite product of simplicies

Dr. Subhankar Sau

(Joint work with Dr. Soumen Sarkar)

Mathematics Statistics Unit Indian Statistical Institute Kolkata Kolkata-700108

March 23, 2022

Toric Topology 2022 in Osaka

Contents

- Motivation
- Quasitoric manifold and its cohomology
- 3 Quasitoric manifold over product of simplices
- 4 Toric manifold and Quasitoric manifold
- 5 Quasitoric manifold over vertex of product of simplices

Motivation

- Suyong Choi, Mikiya Masuda, and Dong Youp Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), no. 1, 109–129. MR 2666127
- Sho Hasui, Hideya Kuwata, Mikiya Masuda, and Seonjeong Park, Classification of toric manifolds over an n-cube with one vertex cut, Int. Math. Res. Not. IMRN (2020), no. 16, 4890–4941. MR 4139029

Quasitoric manifold and its cohomology

• An *n*-dimensional *simple polytope* is an *n*-dimensional convex polytope such that at each vertex (zero dimensional face) exactly *n* facets (codimension one faces) intersect.

Quasitoric manifold and its cohomology

- An n-dimensional simple polytope is an n-dimensional convex polytope such that at each vertex (zero dimensional face) exactly n facets (codimension one faces) intersect.
- We denote the vertex set and facet set of a simple polytope Q by V(Q) and $\mathcal{F}(Q) = \{F_1, F_2, \dots, F_r\}$ respectively.

Quasitoric manifold and its cohomology

- An n-dimensional simple polytope is an n-dimensional convex polytope such that at each vertex (zero dimensional face) exactly n facets (codimension one faces) intersect.
- We denote the vertex set and facet set of a simple polytope Q by V(Q) and $\mathcal{F}(Q) = \{F_1, F_2, \dots, F_r\}$ respectively.
- Let Q be an n-dimensional simple polytope and F a d-dimensional face in Q. Then $F = \bigcap_{j=1}^{n-d} F_{i_j}$ for some unique facets $F_{i_1}, \ldots, F_{i_{n-d}}$ of Q.
- We call $\bigcap_{j=1}^{s} F_{i_j}$ a minimal non-face of Q if

$$\bigcap_{j=1}^s F_{i_j} = \varnothing \text{ and } \bigcap_{\substack{j=1\\j\neq t}}^s F_{i_j} \neq \varnothing$$

for some $1 \le t \le s$.

$$\{\lambda(F_{i_1}),\ldots,\lambda(F_{i_k})\}$$
 span a k – dimensional unimodular submodule in \mathbb{Z}^n

whenever
$$\bigcap_{i=1}^{k} F_{i_j} \neq \varnothing$$
. (2.1)

$$\{\lambda(F_{i_1}),\ldots,\lambda(F_{i_k})\}$$
 span a k – dimensional unimodular submodule in \mathbb{Z}^n

whenever
$$\bigcap_{j=1}^{k} F_{i_j} \neq \varnothing$$
. (2.1)

Then λ is called a *characteristic function* on Q and the pair (Q, λ) called a *characteristic pair*.

 $\{\lambda(F_{i_1}),\ldots,\lambda(F_{i_k})\}$ span a k – dimensional unimodular submodule in \mathbb{Z}^n

whenever
$$\bigcap_{j=1}^{k} F_{i_j} \neq \emptyset$$
. (2.1)

Then λ is called a *characteristic function* on Q and the pair (Q, λ) called a *characteristic pair*.

• Each λ_i determines a line in \mathbb{R}^n , whose image under $exp \colon \mathbb{R}^n \to T^n = (\mathbb{Z}^n \otimes_{\mathbb{Z}} \mathbb{R})/\mathbb{Z}^n$ is a circle subgroup, denoted by T_i .

 $\{\lambda(F_{i_1}),\ldots,\lambda(F_{i_k})\}$ span a k – dimensional unimodular submodule in \mathbb{Z}^n

whenever
$$\bigcap_{j=1}^{k} F_{i_j} \neq \emptyset$$
. (2.1)

Then λ is called a *characteristic function* on Q and the pair (Q, λ) called a *characteristic pair*.

- Each λ_i determines a line in \mathbb{R}^n , whose image under $exp \colon \mathbb{R}^n \to T^n = (\mathbb{Z}^n \otimes_{\mathbb{Z}} \mathbb{R})/\mathbb{Z}^n$ is a circle subgroup, denoted by T_i .
- $T_F := \langle T_{i_1}, \dots, T_{i_{n-d}} \rangle$ where $F = \bigcap_{j=1}^{n-d} F_{i_j}$.

 $\{\lambda(F_{i_1}),\ldots,\lambda(F_{i_k})\}$ span a k – dimensional unimodular submodule in \mathbb{Z}^n

whenever
$$\bigcap_{j=1}^{k} F_{i_j} \neq \varnothing$$
. (2.1)

Then λ is called a *characteristic function* on Q and the pair (Q, λ) called a *characteristic pair*.

- Each λ_i determines a line in \mathbb{R}^n , whose image under $exp \colon \mathbb{R}^n \to T^n = (\mathbb{Z}^n \otimes_{\mathbb{Z}} \mathbb{R})/\mathbb{Z}^n$ is a circle subgroup, denoted by T_i .
- $T_F := \langle T_{i_1}, \dots, T_{i_{n-d}} \rangle$ where $F = \bigcap_{i=1}^{n-d} F_{i_i}$.
- Consider $X(Q, \lambda) := (T^n \times Q) / \sim$,

$$(t,x) \sim (s,y)$$
 if and only if $x = y \in F$ and $t^{-1}s \in T_F$. (2.2)

 $\{\lambda(F_{i_1}),\ldots,\lambda(F_{i_k})\}$ span a k – dimensional unimodular submodule in \mathbb{Z}^n

whenever
$$\bigcap_{j=1}^{k} F_{i_j} \neq \varnothing$$
. (2.1)

Then λ is called a *characteristic function* on Q and the pair (Q, λ) called a *characteristic pair*.

- Each λ_i determines a line in \mathbb{R}^n , whose image under $exp \colon \mathbb{R}^n \to T^n = (\mathbb{Z}^n \otimes_{\mathbb{Z}} \mathbb{R})/\mathbb{Z}^n$ is a circle subgroup, denoted by T_i .
- $T_F := \langle T_{i_1}, \dots, T_{i_{n-d}} \rangle$ where $F = \bigcap_{j=1}^{n-d} F_{i_j}$.
- Consider $X(Q,\lambda) := (T^n \times Q)/\sim$,

$$(t,x) \sim (s,y)$$
 if and only if $x = y \in F$ and $t^{-1}s \in T_F$. (2.2)

The quotient space $X(Q,\lambda)$ has a manifold structure with a natural \mathcal{T}^n action.

 $\{\lambda(F_{i_1}),\ldots,\lambda(F_{i_k})\}$ span a k – dimensional unimodular submodule in \mathbb{Z}^n

whenever
$$\bigcap_{j=1}^{k} F_{i_j} \neq \varnothing$$
. (2.1)

Then λ is called a *characteristic function* on Q and the pair (Q, λ) called a *characteristic pair*.

- Each λ_i determines a line in \mathbb{R}^n , whose image under $exp \colon \mathbb{R}^n \to T^n = (\mathbb{Z}^n \otimes_{\mathbb{Z}} \mathbb{R})/\mathbb{Z}^n$ is a circle subgroup, denoted by T_i .
- $T_F := \langle T_{i_1}, \dots, T_{i_{n-d}} \rangle$ where $F = \bigcap_{j=1}^{n-d} F_{i_j}$.
- Consider $X(Q, \lambda) := (T^n \times Q) / \sim$,

$$(t,x) \sim (s,y)$$
 if and only if $x = y \in F$ and $t^{-1}s \in T_F$. (2.2)

The quotient space $X(Q,\lambda)$ has a manifold structure with a natural T^n action. The orbit map is $\pi \colon X(Q,\lambda) \to Q$.

• Let (Q, λ) be a characteristic pair over an *n*-dimensional simple polytope Q with $\mathcal{F}(Q) := \{F_1, \dots, F_r\}$.

¹M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991)

• Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q) := \{F_1, \dots, F_r\}$. We assign the indeterminate x_i to the facet F_i for $i = 1, \dots, r$.

¹M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991)

- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q) := \{F_1, \dots, F_r\}$. We assign the indeterminate x_i to the facet F_i for $i = 1, \dots, r$.
- Then the integral cohomology ring of $X(Q,\lambda)$ following ¹ is

$$H^*(X(Q,\lambda);\mathbb{Z}) = \mathbb{Z}[x_1,\ldots,x_r]/(I+J). \tag{2.3}$$

¹M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991)

- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q) := \{F_1, \dots, F_r\}$. We assign the indeterminate x_i to the facet F_i for $i = 1, \dots, r$.
- Then the integral cohomology ring of $X(Q,\lambda)$ following ¹ is

$$H^*(X(Q,\lambda);\mathbb{Z}) = \mathbb{Z}[x_1,\ldots,x_r]/(I+J). \tag{2.3}$$

• Here *I* is the Stanley-Reisner ideal of *Q* generated by all square-free monomials associated to the minimal non-faces of *Q*.

¹M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991)

- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q) := \{F_1, \dots, F_r\}$. We assign the indeterminate x_i to the facet F_i for $i = 1, \dots, r$.
- ullet Then the integral cohomology ring of $X(Q,\lambda)$ following 1 is

$$H^*(X(Q,\lambda);\mathbb{Z}) = \mathbb{Z}[x_1,\ldots,x_r]/(I+J). \tag{2.3}$$

• Here I is the Stanley-Reisner ideal of Q generated by all square-free monomials associated to the minimal non-faces of Q. That is $I = \langle x_{i_1} \dots x_{i_s} \mid \bigcap_{j=1}^s F_{i_j}$ is a minimal non face \rangle .

¹M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991)

- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q) := \{F_1, \dots, F_r\}$. We assign the indeterminate x_i to the facet F_i for $i = 1, \dots, r$.
- ullet Then the integral cohomology ring of $X(Q,\lambda)$ following 1 is

$$H^*(X(Q,\lambda);\mathbb{Z}) = \mathbb{Z}[x_1,\ldots,x_r]/(I+J). \tag{2.3}$$

- Here I is the Stanley-Reisner ideal of Q generated by all square-free monomials associated to the minimal non-faces of Q. That is $I = \langle x_{i_1} \dots x_{i_s} \mid \bigcap_{j=1}^s F_{i_j}$ is a minimal non face \rangle .
- Let

$$\lambda_J = \sum_{i=1}^r \lambda_j x_j. \tag{2.4}$$

¹M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991)

- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q) := \{F_1, \dots, F_r\}$. We assign the indeterminate x_i to the facet F_i for $i = 1, \dots, r$.
- ullet Then the integral cohomology ring of $X(Q,\lambda)$ following 1 is

$$H^*(X(Q,\lambda);\mathbb{Z}) = \mathbb{Z}[x_1,\ldots,x_r]/(I+J). \tag{2.3}$$

- Here I is the Stanley-Reisner ideal of Q generated by all square-free monomials associated to the minimal non-faces of Q. That is $I = \langle x_{i_1} \dots x_{i_s} \mid \bigcap_{j=1}^s F_{i_j}$ is a minimal non face \rangle .
- Let

$$\lambda_J = \sum_{j=1}^r \lambda_j x_j. \tag{2.4}$$

The ideal J is generated by the n coordinates of λ_J .

¹M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991)

Example

$$H^*(X(P,\lambda);\mathbb{Z}) = \mathbb{Z}[x_1,\ldots,x_5]/(I+J)$$

where $I = \langle x_1x_2x_3,x_4x_5 \rangle$
and

$$\lambda_J = \sum_{j=1}^{5} \lambda_j x_j$$

= $(-x_1 + x_2 + x_4, -x_1 + x_3 + x_5, 2x_1 - x_4 + x_5).$

Thus
$$J = \frac{\langle -x_1 + x_2 + x_4, -x_1 + x_3 + x_5, 2x_1 - x_4 + x_5 \rangle}{\langle -x_1 + x_2 + x_4, -x_1 + x_3 + x_5, 2x_1 - x_4 + x_5 \rangle}$$

This implies

$$H^*(X(P,\lambda);\mathbb{Z}) = \mathbb{Z}[x_1,x_4]/\overline{I}$$

$$\overline{I} = \langle x_1(x_1 - x_4)(3x_1 - x_4), x_4(-2x_1 + x_4) \rangle.$$

Let

$$P = \prod_{j=1}^{m} \Delta^{n_j} \tag{3.1}$$

Let

$$P = \prod_{j=1}^{m} \Delta^{n_j} \tag{3.1}$$

and the dimension of P is $n := \sum_{j=1}^{m} n_j$.

Let

$$P = \prod_{j=1}^{m} \Delta^{n_j} \tag{3.1}$$

and the dimension of P is $n:=\sum_{j=1}^m n_j$. Let us denote $N_s:=\sum_{j=1}^s n_j$ for $s=1,\ldots,m$.

Let

$$P = \prod_{i=1}^{m} \Delta^{n_i} \tag{3.1}$$

and the dimension of P is $n := \sum_{j=1}^{m} n_j$. Let us denote $N_s := \sum_{j=1}^{s} n_j$ for $s = 1, \ldots, m$. Also we assume $N_0 := 0$.

Let

$$P = \prod_{i=1}^{m} \Delta^{n_i} \tag{3.1}$$

and the dimension of P is $n := \sum_{j=1}^{m} n_j$. Let us denote $N_s := \sum_{j=1}^{s} n_j$ for s = 1, ..., m. Also we assume $N_0 := 0$.

• Let $V(\Delta^{n_j}) := \{v_0^j, \dots, v_{n_j}^j\}$

Let

$$P = \prod_{j=1}^{m} \Delta^{n_j} \tag{3.1}$$

and the dimension of P is $n := \sum_{j=1}^{m} n_j$. Let us denote $N_s := \sum_{j=1}^{s} n_j$ for $s = 1, \dots, m$. Also we assume $N_0 := 0$.

• Let $V(\Delta^{n_j}) := \{v_0^j, \dots, v_{n_j}^j\}$ and $\mathcal{F}(\Delta^{n_j}) := \{f_0^j, \dots f_{n_j}^j\}$ where the unique facet $f_{k_j}^j$ does not contain the vertex $v_{k_j}^j$ in Δ^{n_j} for $0 \leqslant k_j \leqslant n_j$ for $j = 1, \dots, m$.

Let

$$P = \prod_{j=1}^{m} \Delta^{n_j} \tag{3.1}$$

and the dimension of P is $n := \sum_{j=1}^{m} n_j$. Let us denote $N_s := \sum_{j=1}^{s} n_j$ for $s = 1, \ldots, m$. Also we assume $N_0 := 0$.

• Let $V(\Delta^{n_j}):=\{v_0^j,\ldots,v_{n_j}^j\}$ and $\mathcal{F}(\Delta^{n_j}):=\{f_0^j,\ldots f_{n_j}^j\}$ where the unique facet $f_{k_j}^j$ does not contain the vertex $v_{k_j}^j$ in Δ^{n_j} for $0\leqslant k_j\leqslant n_j$ for $j=1,\ldots,m$. Then

$$V(P) = \{ v_{\ell_1 \ell_2 \dots \ell_m} := (v_{\ell_1}^1, v_{\ell_2}^2, \dots, v_{\ell_m}^m) \mid 0 \leqslant \ell_j \leqslant n_j, j = 1, \dots, m \}$$

$$\mathcal{F}(P) = \{ F_{k_j}^j \mid 0 \leqslant k_j \leqslant n_j, 1 \leqslant j \leqslant m \}$$
where $F_{k_j}^j := \Delta^{n_1} \times \dots \times \Delta^{n_{j-1}} \times f_{k_j}^j \times \Delta^{n_{j+1}} \times \dots \times \Delta^{n_m}.$
(3.2)

Notice that

$$\mathbf{v}_0 := \mathbf{v}_{0...0} = F_1^1 \cap \cdots \cap F_{n_1}^1 \cap \cdots \cap F_1^j \cap \cdots \cap F_{n_j}^m \cap \cdots \cap F_1^m \cap \cdots \cap F_{n_m}^m.$$

Let

$$\lambda \colon \mathcal{F}(P) \to \mathbb{Z}^n \tag{3.3}$$

be a characteristic function on P where

$$\lambda(F_{1}^{1}) = e_{1}, \dots, \lambda(F_{n_{1}}^{1}) = e_{n_{1}},$$

$$\vdots$$

$$\lambda(F_{1}^{j}) = e_{N_{j-1}+1}, \dots, \lambda(F_{n_{j}}^{j}) = e_{N_{j}},$$

$$\vdots$$

$$\lambda(F_{1}^{m}) = e_{N_{m-1}+1}, \dots, \lambda(F_{n_{m}}^{m}) = e_{n}.$$
(3.4)

For the remaining m facets F_0^1, \ldots, F_0^m , we denote

$$\mathbf{a}_j := \lambda(F_0^j) \in \mathbb{Z}^n \quad \text{ for } j = 1, \dots, m.$$
 (3.5)

Example

Theorem $3.1 (^2)$

Let $X(P,\lambda)$ be a quasitoric manifold where $P=\prod_{i=1}^m \Delta^{n_i}$ is a product of simplices as in (3.1) and λ is defined following (3.4) and (3.5). Then

$$H^*(X(P,\lambda);\mathbb{Z}) \cong \mathbb{Z}[y_1,\ldots,y_m]/\mathcal{L},$$
 (3.6)

where the indeterminate y_i is assigned to the facet F_0^J for $j=1,\ldots,m$ and \mathcal{L} is the ideal generated by

$$y_j \prod_{i=1}^{n_j} (a_{1\ell}^j y_1 + a_{2\ell}^j y_2 + \dots + a_{m\ell}^j y_m)$$
 for $j = 1, \dots, m$.

²Suyong Choi, Mikiya Masuda, and Dong Youp Suh, *Quasitoric manifolds over a product of* simplices, Osaka J. Math. 47 (2010), no. 1, 109-129. MR 2666127 Cohomology of (quasi)toric manifolds

A simplicial complex ${\mathcal K}$ is a set of simplices that satisfies the following

- Every face of a simplex from K is also in K.
- The non-empty intersection of any two simplices $\sigma_1, \sigma_2 \in \mathcal{K}$ is a face of both σ_1 and σ_2 .

A simplicial complex ${\mathcal K}$ is a set of simplices that satisfies the following

- ullet Every face of a simplex from ${\cal K}$ is also in ${\cal K}.$
- The non-empty intersection of any two simplices $\sigma_1, \sigma_2 \in \mathcal{K}$ is a face of both σ_1 and σ_2 .

Let \mathcal{K} be an (n-1)-dimensional simplicial complex with m vertices which we denote by $\mathcal{V}(\mathcal{K}) = \{v_1, \dots, v_m\}$.

A simplicial complex ${\mathcal K}$ is a set of simplices that satisfies the following

- ullet Every face of a simplex from ${\cal K}$ is also in ${\cal K}$.
- The non-empty intersection of any two simplices $\sigma_1, \sigma_2 \in \mathcal{K}$ is a face of both σ_1 and σ_2 .

Let $\mathcal K$ be an (n-1)-dimensional simplicial complex with m vertices which we denote by $\mathcal V(\mathcal K)=\{v_1,\dots,v_m\}$. Define a map

$$\lambda \colon \mathcal{V}(\mathcal{K}) \to \mathbb{Z}^n$$
.

We denote $\lambda(v_i) = \lambda_i$ for $i = 1, \dots, m$.

A simplicial complex ${\mathcal K}$ is a set of simplices that satisfies the following

- Every face of a simplex from K is also in K.
- The non-empty intersection of any two simplices $\sigma_1, \sigma_2 \in \mathcal{K}$ is a face of both σ_1 and σ_2 .

Let $\mathcal K$ be an (n-1)-dimensional simplicial complex with m vertices which we denote by $\mathcal V(\mathcal K)=\{v_1,\dots,v_m\}$. Define a map

$$\lambda \colon \mathcal{V}(\mathcal{K}) \to \mathbb{Z}^n$$
.

We denote $\lambda(v_i) = \lambda_i$ for i = 1, ..., m. For each $I \in \mathcal{K}$, one can define the following cone

$$C(I) := \{ \sum_{v_i \in I} t_i \lambda_i \in \mathbb{R}^n \mid t_i \in \mathbb{R}_{\geqslant 0} \text{ for all } v_i \in I \}.$$

Definition 4.1

The pair (K, λ) is called a (simplicial) fan of dimension n over K if it satisfies:

1 For $I = \{v_{i_1}, \dots, v_{i_k}\} \in \mathcal{K}$, the vectors $\lambda_{i_1}, \dots, \lambda_{i_k}$ are linearly independent over \mathbb{R} .

³William Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:

- For $I = \{v_{i_1}, \dots, v_{i_k}\} \in \mathcal{K}$, the vectors $\lambda_{i_1}, \dots, \lambda_{i_k}$ are linearly independent over \mathbb{R} .
- $2 C(I) \cap C(J) = C(I \cap J) \text{ for } I, J \in \mathcal{K}.$

³William Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:

- For $I = \{v_{i_1}, \dots, v_{i_k}\} \in \mathcal{K}$, the vectors $\lambda_{i_1}, \dots, \lambda_{i_k}$ are linearly independent over \mathbb{R} .

If $\bigcup_{I \in \mathcal{K}} C(I) = \mathbb{R}^n$, then the fan (\mathcal{K}, λ) is called *complete*.

³William Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:

- For $I = \{v_{i_1}, \dots, v_{i_k}\} \in \mathcal{K}$, the vectors $\lambda_{i_1}, \dots, \lambda_{i_k}$ are linearly independent over \mathbb{R} .

If $\bigcup_{I \in \mathcal{K}} C(I) = \mathbb{R}^n$, then the fan (\mathcal{K}, λ) is called *complete*.If $\{\lambda_i : v_i \in I\}$ forms a part of a basis of \mathbb{Z}^n for any $I \in \mathcal{K}$, then the fan is called *non-singular*.

³William Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

The pair (K, λ) is called a (simplicial) fan of dimension n over K if it satisfies:

- For $I = \{v_{i_1}, \dots, v_{i_k}\} \in \mathcal{K}$, the vectors $\lambda_{i_1}, \dots, \lambda_{i_k}$ are linearly independent over \mathbb{R} .

If $\bigcup_{I \in \mathcal{K}} C(I) = \mathbb{R}^n$, then the fan (\mathcal{K}, λ) is called *complete*.If $\{\lambda_i \colon v_i \in I\}$ forms a part of a basis of \mathbb{Z}^n for any $I \in \mathcal{K}$, then the fan is called *non-singular*.

Definition 4.2

A complete, non-singular toric variety is called a toric manifold.

³William Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:

- For $I = \{v_{i_1}, \dots, v_{i_k}\} \in \mathcal{K}$, the vectors $\lambda_{i_1}, \dots, \lambda_{i_k}$ are linearly independent over \mathbb{R} .

If $\bigcup_{I \in \mathcal{K}} C(I) = \mathbb{R}^n$, then the fan (\mathcal{K}, λ) is called *complete*.If $\{\lambda_i : v_i \in I\}$ forms a part of a basis of \mathbb{Z}^n for any $I \in \mathcal{K}$, then the fan is called *non-singular*.

Definition 4.2

A complete, non-singular toric variety is called a toric manifold.

Proposition 4.3 (3)

There exists a one to one correspondence between the toric varities of complex dimension n and rational fans of dimension n.

³William Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry Cohomology of (quasi)toric manifolds

Definition 4.4 (Distance function)

Let P be a polytope and v_1 , v_2 two different vertices in P. A path between v_1 and v_2 is a sequence of edges $\xi_1, \xi_2, \ldots, \xi_d$ such that $v_1 \in \xi_1$, $v_2 \in \xi_d$ and $\xi_i \cap \xi_{i+1}$ is a vertex of both for $i = 1, \ldots, (d-1)$. The distance between two vertices v_1 and v_2 is the minimum d and it is denoted by $D(v_1, v_2)$.

Figure: A distance function on the vertices of a polytope.

• Let (P, λ) be a characteristic pair where P is a product of m simplices and λ a characteristic function on P as defined following (3.4) and (3.5).

- Let (P, λ) be a characteristic pair where P is a product of m simplices and λ a characteristic function on P as defined following (3.4) and (3.5).
- Let **v** be a vertex in P. So, $\mathbf{v} = \bigcap_{j=1}^n F_j$ for some unique facets F_j 's of P.

- Let (P, λ) be a characteristic pair where P is a product of m simplices and λ a characteristic function on P as defined following (3.4) and (3.5).
- Let **v** be a vertex in P. So, $\mathbf{v} = \bigcap_{i=1}^n F_i$ for some unique facets F_i 's of P.
- We fix the order of colums at $\mathbf{v}_0 := v_{0...0}$

$$A_{\mathbf{v}_0} := \begin{pmatrix} \lambda(F_1^1) & \dots & \lambda(F_{n_1}^1) & \dots & \lambda(F_1^m) & \dots & \dots & \lambda(F_{n_m}^m) \end{pmatrix}$$

$$= \begin{pmatrix} e_1 & \dots & e_{n_1} & \dots & \dots & e_{N_{m-1}+1} & \dots & e_n \end{pmatrix}.$$

$$(4.1)$$

- Let (P, λ) be a characteristic pair where P is a product of m simplices and λ a characteristic function on P as defined following (3.4) and (3.5).
- Let **v** be a vertex in P. So, $\mathbf{v} = \bigcap_{j=1}^n F_j$ for some unique facets F_j 's of P.
- We fix the order of colums at $\mathbf{v}_0 := v_{0...0}$

$$A_{\mathbf{v}_0} := \begin{pmatrix} \lambda(F_1^1) & \dots & \lambda(F_{n_1}^1) & \dots & \lambda(F_1^m) & \dots & \dots & \lambda(F_{n_m}^m) \end{pmatrix} \qquad (4.1)$$

$$= \begin{pmatrix} e_1 & \dots & e_{n_1} & \dots & \dots & e_{N_{m-1}+1} & \dots & e_n \end{pmatrix}.$$

• Let $D(\mathbf{v}, \mathbf{v}_0) = d > 0$. Then we may consider a path of length d from \mathbf{v}_0 to \mathbf{v} .

- Let $D(\mathbf{v}, \mathbf{v}_0) = d > 0$. Then we may consider a path of length d from \mathbf{v}_0 to \mathbf{v} .
- That is if ξ_1, \ldots, ξ_d is the sequence of edges joining \mathbf{v}_0 to \mathbf{v} such that $\mathbf{v}_0 \in \xi_1$, $v \in \xi_d$ and $\xi_i \cap \xi_{i+1} = \mathbf{v}_i$ then the matrix $A_{\mathbf{v}_{i+1}}$ is formed by a replacement of exactly one standard basis vector in the columns of $A_{\mathbf{v}_i}$ for $i = 1, \ldots, d-1$.

- Let $D(\mathbf{v}, \mathbf{v}_0) = d > 0$. Then we may consider a path of length d from \mathbf{v}_0 to \mathbf{v} .
- That is if ξ_1, \ldots, ξ_d is the sequence of edges joining \mathbf{v}_0 to \mathbf{v} such that $\mathbf{v}_0 \in \xi_1$, $v \in \xi_d$ and $\xi_i \cap \xi_{i+1} = \mathbf{v}_i$ then the matrix $A_{\mathbf{v}_{i+1}}$ is formed by a replacement of exactly one standard basis vector in the columns of $A_{\mathbf{v}_i}$ for $i = 1, \ldots, d-1$.
- Let $\mathbf{v} \in V(P)$. Then $\mathbf{v} = v_{\ell_1 \ell_2 \dots \ell_m}$ for some $0 \leqslant \ell_j \leqslant n_j$, $j = 1, \dots, m$ and

$$\mathbf{v} = igcap_{k_j
eq \ell_j}^m F_{k_j}^j.$$

- Let $D(\mathbf{v}, \mathbf{v}_0) = d > 0$. Then we may consider a path of length d from \mathbf{v}_0 to \mathbf{v} .
- That is if ξ_1, \ldots, ξ_d is the sequence of edges joining \mathbf{v}_0 to \mathbf{v} such that $\mathbf{v}_0 \in \xi_1$, $v \in \xi_d$ and $\xi_i \cap \xi_{i+1} = \mathbf{v}_i$ then the matrix $A_{\mathbf{v}_{i+1}}$ is formed by a replacement of exactly one standard basis vector in the columns of $A_{\mathbf{v}_i}$ for $i = 1, \ldots, d-1$.
- Let $\mathbf{v} \in V(P)$. Then $\mathbf{v} = v_{\ell_1 \ell_2 \dots \ell_m}$ for some $0 \leqslant \ell_j \leqslant n_j$, $j = 1, \dots, m$ and

$$\mathbf{v} = igcap_{\substack{j=1 \ k_j
eq \ell_j}}^m F_{k_j}^j.$$

- If $\ell_j \neq 0$ for $j \in \{1, \dots, m\}$, then $e_{N_{j-1} + \ell_j}$ is replaced by \mathbf{a}_j by keeping the order of other columns of $A_{\mathbf{v}_0}$ intact.
- Note that the matrix $A_{\mathbf{v}}$ does not alter by the choice of the path if we choose any other shortest path of length d.

- Let $D(\mathbf{v}, \mathbf{v}_0) = d > 0$. Then we may consider a path of length d from \mathbf{v}_0 to \mathbf{v} .
- That is if ξ_1, \ldots, ξ_d is the sequence of edges joining \mathbf{v}_0 to \mathbf{v} such that $\mathbf{v}_0 \in \xi_1$, $v \in \xi_d$ and $\xi_i \cap \xi_{i+1} = \mathbf{v}_i$ then the matrix $A_{\mathbf{v}_{i+1}}$ is formed by a replacement of exactly one standard basis vector in the columns of $A_{\mathbf{v}_i}$ for $i = 1, \ldots, d-1$.
- Let $\mathbf{v} \in V(P)$. Then $\mathbf{v} = v_{\ell_1 \ell_2 \dots \ell_m}$ for some $0 \leqslant \ell_j \leqslant n_j$, $j = 1, \dots, m$ and

$$\mathbf{v} = igcap_{k_j=1}^m F_{k_j}^j.$$

- If $\ell_j \neq 0$ for $j \in \{1, \dots, m\}$, then $e_{N_{j-1} + \ell_j}$ is replaced by \mathbf{a}_j by keeping the order of other columns of $A_{\mathbf{v}_0}$ intact.
- Note that the matrix $A_{\mathbf{v}}$ does not alter by the choice of the path if we choose any other shortest path of length d.
- If \mathbf{v} is a vertex such that $D(\mathbf{v}, \mathbf{v}_0) = m$, i.e., $\ell_j \neq 0$ for all $j = 1, \dots, m$. Then the matrix $A_{\mathbf{v}}$ is given by

$$A_{\mathbf{v}} = \begin{pmatrix} e_1 & \dots & e_{\ell_1-1} & \mathbf{a}_1 & e_{\ell_1+1} & \dots & e_{N_1} & e_{N_1+1} & \dots & e_{N_1+\ell_2-1} & \mathbf{a}_2 & e_{N_1+\ell_2+1} & \dots \\ e_{N_2} & \dots & e_{N_{m-1}+1} & \dots & e_{N_{m-1}+\ell_m-1} & \mathbf{a}_m & e_{N_{m-1}+\ell_m+1} & \dots & e_{N_m} \end{pmatrix}.$$

Let σ be an n-dimensional nonsingular cone in \mathbb{R}^n . Then σ is generated by n linearly independent vectors $\{\xi_1,\ldots,\xi_n\}$ in \mathbb{R}^n . Let $M:=(\xi_1,\ldots,\xi_n)$ be the nonsingular $n\times n$ matrix. By $\det(\sigma)$ we denote the determinant of the matrix M.

Lemma 4.5

Let σ_1 and σ_2 be two nonsingular cones in \mathbb{R}^n of dimension n. If $\sigma_1 \cap \sigma_2$ is a face of dimension n-1 then $\det(\sigma_1)$ and $\det(\sigma_2)$ have differnt signs.

Theorem 4.6

Let P be a finite product of simplices as (3.1) and λ a characteristic function on P as in (3.3). If $X(P,\lambda)$ is a toric manifold then

$$\det A_{\mathbf{v}} = \begin{cases} -1 & \text{if } D(\mathbf{v}, \mathbf{v}_0) = \text{odd} \\ +1 & \text{if } D(\mathbf{v}, \mathbf{v}_0) = \text{even} \end{cases}$$
(4.2)

where \mathbf{v}_0 denotes the vertex \mathbf{v}_0 0.

Theorem 4.7

Let P be a product of two simplices and λ a characteristic function defined on P as in (3.3) such that for any vertex $\mathbf{v} \in V(P)$ the following holds:

$$\det A_{\mathbf{v}} = \begin{cases} -1 & \text{if } D(\mathbf{v}, \mathbf{v}_0) = \text{odd} \\ +1 & \text{if } D(\mathbf{v}, \mathbf{v}_0) = \text{even} \end{cases}$$
(4.3)

Then $X(P, \lambda)$ is a toric manifold.

Quasitoric manifold over vertex of product of simplices

Figure: A vertex cut of a prism where the facets and vertices are induced from Δ^2 and I.

Quasitoric manifold over vertex of product of simplices

Figure: A vertex cut of a prism where the facets and vertices are induced from Δ^2 and I.

Let \bar{P} be a vertex cut of P at the vertex $\tilde{\mathbf{v}} := v_{n_1 n_2 \dots n_m}$. Then the vertex set and the facet set of \bar{P} are respectively

$$V(\bar{P}) := (V(P) \setminus \{\tilde{\mathbf{v}}\}) \cup V(\bar{F}),$$

$$\mathcal{F}(\bar{P}) := \{\bar{F}_{k_i}^j := F_{k_i}^j \cap \bar{P} \mid F_{k_i}^j \in \mathcal{F}(P)\} \cup \{\bar{F}\}.$$

$$(5.1)$$

Let

$$\bar{\lambda} \colon \mathcal{F}(\bar{P}) \to \mathbb{Z}^n$$
 (5.2)

be a characteristic function defined as follows

$$\bar{\lambda}(\bar{F}_{j}^{1}) := e_{j} \quad \text{for } j = 1, \dots, n_{1},
\vdots
\bar{\lambda}(\bar{F}_{j}^{m}) := e_{N_{m-1}+j} \quad \text{for } j = 1, \dots, n_{m},
\bar{\lambda}(\bar{F}_{0}^{j}) := \mathbf{a}_{j} \in \mathbb{Z}^{n} \quad \text{for } j = 1, \dots, m,
\bar{\lambda}(\bar{F}) := \mathbf{b} \in \mathbb{Z}^{n}.$$
(5.3)

where e_1, \ldots, e_n are the standard basis vectors of \mathbb{Z}^n .

Let

$$\bar{\lambda} \colon \mathcal{F}(\bar{P}) \to \mathbb{Z}^n$$
 (5.2)

be a characteristic function defined as follows

$$\bar{\lambda}(\bar{F}_{j}^{1}) := e_{j} \quad \text{for } j = 1, \dots, n_{1},
\vdots
\bar{\lambda}(\bar{F}_{j}^{m}) := e_{N_{m-1}+j} \quad \text{for } j = 1, \dots, n_{m},$$

$$\bar{A}_{j} = e_{N_{m-1}+j} \quad \text{for } j = 1, \dots, n_{m},$$

$$\bar{A}_{j} = e_{N_{m-1}+j} \quad \text{for } j = 1, \dots, n_{m},$$

$$\bar{\lambda}(\bar{F}_0^j) := \mathbf{a}_j \in \mathbb{Z}^n \quad \text{for } j = 1, \dots, m,$$

$$\bar{\lambda}(\bar{F}) := \mathbf{b} \in \mathbb{Z}^n.$$

where e_1, \ldots, e_n are the standard basis vectors of \mathbb{Z}^n .

The characteristic pair $(\bar{P}, \bar{\lambda})$ induces a map $\lambda \colon \mathcal{F}(P) \to \mathbb{Z}^n$ defined by

$$\lambda(F_{k_j}^j) := \bar{\lambda}(\bar{F}_{k_j}^j) \tag{5.4}$$

for $j = 1, \ldots, m$ and $1 \leq k_i \leq n_i$.

Note that,
$$\tilde{\mathbf{v}} = F_1^1 \cap \cdots \cap F_{n_1-1}^1 \cap F_0^1 \cap \cdots \cap F_1^m \cap \cdots \cap F_{n_m-1}^m \cap F_0^m$$
.

Note that, $\tilde{\mathbf{v}} = F_1^1 \cap \cdots \cap F_{n_1-1}^1 \cap F_0^1 \cap \cdots \cap F_1^m \cap \cdots \cap F_{n_m-1}^m \cap F_0^m$. The following matrix

$$A_{\tilde{\mathbf{v}}} := A_{\mathbf{v}_{n_1...n_m}} = (e_1 \ldots e_{N_1-1} \mathbf{a}_1 e_{N_1+1} \ldots \mathbf{a}_{m-1} e_{N_{(m-1)}+1} \ldots e_{N_m-1} \mathbf{a}_m)$$
(5.5)

is associated to the vertex $\tilde{\mathbf{v}} \in V(P)$.

Note that, $\tilde{\mathbf{v}} = F_1^1 \cap \cdots \cap F_{n_1-1}^1 \cap F_0^1 \cap \cdots \cap F_1^m \cap \cdots \cap F_{n_m-1}^m \cap F_0^m$. The following matrix

$$A_{\tilde{\mathbf{v}}} := A_{\mathbf{v}_{n_1...n_m}} = (e_1 \ldots e_{N_1-1} \mathbf{a}_1 e_{N_1+1} \ldots \mathbf{a}_{m-1} e_{N_{(m-1)}+1} \ldots e_{N_m-1} \mathbf{a}_m)$$

$$(5.5)$$

is associated to the vertex $\tilde{\mathbf{v}} \in V(P)$.

Lemma 5.1 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of the polytope $P = \prod_{j=1}^m \Delta^{n_j}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

Note that, $\tilde{\mathbf{v}} = F_1^1 \cap \cdots \cap F_{n_1-1}^1 \cap F_0^1 \cap \cdots \cap F_1^m \cap \cdots \cap F_{n_m-1}^m \cap F_0^m$. The following matrix

$$A_{\tilde{\mathbf{v}}} := A_{v_{n_1...n_m}} = (e_1 \ldots e_{N_1-1} \mathbf{a}_1 e_{N_1+1} \ldots \mathbf{a}_{m-1} e_{N_{(m-1)}+1} \ldots e_{N_m-1} \mathbf{a}_m)$$
(5.5)

is associated to the vertex $\tilde{\mathbf{v}} \in V(P)$.

Lemma 5.1 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of the polytope $P = \prod_{j=1}^m \Delta^{n_j}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$\det A_{\mathbf{u}} = \begin{cases} -1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = odd \\ +1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = even \end{cases}$$
 (5.6)

for $\mathbf{u} \in V(\bar{P})$. Then the matrix $A_{\tilde{\mathbf{v}}}$ can be characterized based on the determinant of the matrix.

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of the polytope $P = \prod_{i=1}^m \Delta^{n_i}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of the polytope $P = \prod_{j=1}^m \Delta^{n_j}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$\det A_{\mathbf{u}} = \begin{cases} -1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{odd} \\ +1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{even} \end{cases}$$
 (5.7)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of the polytope $P = \prod_{j=1}^m \Delta^{n_j}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$\det A_{\mathbf{u}} = \begin{cases} -1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{odd} \\ +1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{even} \end{cases}$$
 (5.7)

for any $\mathbf{u} \in V(\bar{P})$ and $\mathbf{u}_0 := u_{0,\dots,0}$.

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of the polytope $P = \prod_{j=1}^m \Delta^{n_j}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$\det A_{\mathbf{u}} = \begin{cases} -1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{odd} \\ +1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{even} \end{cases}$$
 (5.7)

for any $\mathbf{u} \in V(\bar{P})$ and $\mathbf{u}_0 := u_{0,...,0}$. Then we can determine \mathbf{b} according to the values of $\det A_{\tilde{\mathbf{v}}}$ as follows

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of the polytope $P = \prod_{j=1}^m \Delta^{n_j}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$\det A_{\mathbf{u}} = \begin{cases} -1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{odd} \\ +1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{even} \end{cases}$$
 (5.7)

for any $\mathbf{u} \in V(\bar{P})$ and $\mathbf{u}_0 := u_{0,\dots,0}$. Then we can determine \mathbf{b} according to the values of $\det A_{\tilde{\mathbf{v}}}$ as follows

Case 1: If det $A_{\tilde{\mathbf{v}}} = 0$, then

$$\sum_{i=1}^{m} b_{N_j} = -1$$

and b_i can be arbitrary if $i \notin \{N_1, \dots, N_m\}$.

Let $X(P,\lambda)$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of the polytope $P = \prod_{i=1}^{m} \Delta^{n_i}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$\det A_{\mathbf{u}} = \begin{cases} -1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{odd} \\ +1 & \text{if } D(\mathbf{u}, \mathbf{u}_0) = \text{even} \end{cases}$$
 (5.7)

for any $\mathbf{u} \in V(P)$ and $\mathbf{u}_0 := u_{0,\dots,0}$. Then we can determine \mathbf{b} according to the values of det A_v as follows

Case 1: If det $A_{\tilde{\mathbf{v}}} = 0$, then

$$\sum_{i=1}^{m} b_{N_j} = -1$$

and b_i can be arbitrary if $i \notin \{N_1, \ldots, N_m\}$.

Case 2: If det $A_{\tilde{\mathbf{v}}} \neq 0$, then

$$b_i = \frac{(-1)^m}{\det A_{\tilde{\mathbf{v}}}} \sum_{q=1}^n A_{(i,q)}$$

for i = 1, ..., n where $A_{(i,a)}$ is the (i,q)-th entry of the matrix $A_{\tilde{\mathbf{v}}}$. Cohomology of (quasi)toric manifolds

$$H^*(X(\bar{P},\bar{\lambda})) \cong \mathbb{Z}[y_1,\ldots,y_m,y]/\bar{I}$$
 (5.8)

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{\mathbf{v}}}$ while the generators remains same for all the cases.

⁴M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991).

$$H^*(X(\bar{P},\bar{\lambda})) \cong \mathbb{Z}[y_1,\ldots,y_m,y]/\bar{I}$$
 (5.8)

where the homogeneous ideal I changes depending on the determinant of $A_{\tilde{\mathbf{v}}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_1, \ldots, y_m, y belong to $H^2(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:

Dr. Subhankar Sau (ISI Kolkata)

⁴M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991).

$$H^*(X(\bar{P},\bar{\lambda})) \cong \mathbb{Z}[y_1,\ldots,y_m,y]/\bar{I}$$
 (5.8)

where the homogeneous ideal I changes depending on the determinant of $A_{\tilde{\mathbf{v}}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_1, \ldots, y_m, y belong to $H^2(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:

$$yy_1 = yy_2 = \cdots = yy_m,$$

⁴M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991).

$$H^*(X(\bar{P},\bar{\lambda})) \cong \mathbb{Z}[y_1,\ldots,y_m,y]/\bar{I}$$
 (5.8)

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{\mathbf{v}}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_1, \ldots, y_m, y belong to $H^2(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:

- ② $y^2 = (-1)^{m+1} (\det A_{\tilde{v}}) y y_j$ for any j = 1, ..., m.

⁴M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991).

$$H^*(X(\bar{P},\bar{\lambda})) \cong \mathbb{Z}[y_1,\ldots,y_m,y]/\bar{I}$$
 (5.8)

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{\mathbf{v}}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_1, \ldots, y_m, y belong to $H^2(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:

- ② $y^2 = (-1)^{m+1} (\det A_{\tilde{v}}) y y_j$ for any j = 1, ..., m.

Theorem 5.4 (Sarkar, Sau)

Let $P=\prod_{j=1}^m \Delta^{n_j}$ be a product of simplices as in (3.1) and \bar{P} is a vertex cut of P along a vertex $\tilde{\mathbf{v}}=v_{n_1...n_m}$ such that $\det A_{\tilde{\mathbf{v}}}=0$.

⁴M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions*, Duke Math. J. **62**(1991).

$$H^*(X(\bar{P},\bar{\lambda})) \cong \mathbb{Z}[y_1,\ldots,y_m,y]/\bar{I}$$
 (5.8)

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{\mathbf{v}}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_1, \ldots, y_m, y belong to $H^2(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:

- ② $y^2 = (-1)^{m+1} (\det A_{\tilde{v}}) y y_j$ for any j = 1, ..., m.

Theorem 5.4 (Sarkar, Sau)

Let $P = \prod_{j=1}^m \Delta^{n_j}$ be a product of simplices as in (3.1) and \bar{P} is a vertex cut of P along a vertex $\tilde{\mathbf{v}} = v_{n_1...n_m}$ such that $\det A_{\tilde{\mathbf{v}}} = 0$. Then the cohomology rings $H^*(X(\bar{P},\bar{\lambda}))$ are isomorphic to each other if $b_i = 0$ for $i \neq N_j$ and $j = 1,\ldots,m$ in the vector \mathbf{b} assigned to the new facet \bar{F} .

⁴M. W. Davis, and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions,* Duke Math. J. **62**(1991).

$$\mathsf{Ann}(z) = \{w \in H^2(X(\bar{P},\bar{\lambda})) \mid zw = 0 \text{ in } H^4(X(\bar{P},\bar{\lambda}))\}.$$

$$\mathsf{Ann}(z) = \{w \in H^2(X(\bar{P},\bar{\lambda})) \mid zw = 0 \text{ in } H^4(X(\bar{P},\bar{\lambda}))\}.$$

Since $\{\bar{F}, \bar{F}_{n_j}^j\}$ for $j=1,\ldots,m$ are non-faces of \bar{P} , then $\mathrm{Ann}(cy)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

$$\mathsf{Ann}(z) = \{w \in H^2(X(\bar{P},\bar{\lambda})) \mid zw = 0 \text{ in } H^4(X(\bar{P},\bar{\lambda}))\}.$$

Since $\{\bar{F}, \bar{F}_{n_j}^j\}$ for $j=1,\ldots,m$ are non-faces of \bar{P} , then $\mathsf{Ann}(cy)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

Theorem 5.5 (Sarkar, Sau)

Let $P=\prod_{j=1}^m \Delta^{n_j}$ be a finite product of simplices as in (3.1) with $m\geqslant 2$ and $n\geqslant 3$ and $X(\bar{P},\bar{\lambda})$ is a (quasi)toric manifold over the vertex cut at $\tilde{\mathbf{v}}=v_{n_1...n_m}$ of P

$$\mathsf{Ann}(z) = \{ w \in H^2(X(\bar{P}, \bar{\lambda})) \mid zw = 0 \text{ in } H^4(X(\bar{P}, \bar{\lambda})) \}.$$

Since $\{\bar{F}, \bar{F}_{n_j}^j\}$ for $j=1,\ldots,m$ are non-faces of \bar{P} , then $\mathsf{Ann}(cy)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

Theorem 5.5 (Sarkar, Sau)

Let $P = \prod_{j=1}^m \Delta^{n_j}$ be a finite product of simplices as in (3.1) with $m \ge 2$ and $n \ge 3$ and $X(\bar{P}, \bar{\lambda})$ is a (quasi)toric manifold over the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of P. If Ann(z) is of rank m for a $z \in H^2(X(\bar{P}, \bar{\lambda}))$ and $\det A_{\tilde{\mathbf{v}}} = (-1)^m$, then z is a constant multiple of y.

$$\mathsf{Ann}(z) = \{ w \in H^2(X(\bar{P}, \bar{\lambda})) \mid zw = 0 \text{ in } H^4(X(\bar{P}, \bar{\lambda})) \}.$$

Since $\{\bar{F}, \bar{F}_{n_j}^j\}$ for $j=1,\ldots,m$ are non-faces of \bar{P} , then $\mathsf{Ann}(cy)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

Theorem 5.5 (Sarkar, Sau)

Let $P = \prod_{j=1}^m \Delta^{n_j}$ be a finite product of simplices as in (3.1) with $m \ge 2$ and $n \ge 3$ and $X(\bar{P}, \bar{\lambda})$ is a (quasi)toric manifold over the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of P. If Ann(z) is of rank m for a $z \in H^2(X(\bar{P}, \bar{\lambda}))$ and $\det A_{\tilde{\mathbf{v}}} = (-1)^m$, then z is a constant multiple of y.

Theorem 5.6 (Sarkar, Sau)

Let $P = \prod_{j=1}^m \Delta^{n_j}$ be a product of simplices as in (3.1) with $m \ge 2$, $n \ge 3$ and \bar{P} is a vertex cut of P along a vertex $\tilde{\mathbf{v}}$ such that $\det A_{\tilde{\mathbf{v}}} = (-1)^m$.

$$\mathsf{Ann}(z) = \{ w \in H^2(X(\bar{P}, \bar{\lambda})) \mid zw = 0 \text{ in } H^4(X(\bar{P}, \bar{\lambda})) \}.$$

Since $\{\bar{F}, \bar{F}_{n_j}^j\}$ for $j=1,\ldots,m$ are non-faces of \bar{P} , then $\mathsf{Ann}(cy)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

Theorem 5.5 (Sarkar, Sau)

Let $P = \prod_{j=1}^m \Delta^{n_j}$ be a finite product of simplices as in (3.1) with $m \ge 2$ and $n \ge 3$ and $X(\bar{P}, \bar{\lambda})$ is a (quasi)toric manifold over the vertex cut at $\tilde{\mathbf{v}} = v_{n_1...n_m}$ of P. If Ann(z) is of rank m for a $z \in H^2(X(\bar{P}, \bar{\lambda}))$ and $\det A_{\tilde{\mathbf{v}}} = (-1)^m$, then z is a constant multiple of y.

Theorem 5.6 (Sarkar, Sau)

Let $P=\prod_{j=1}^m \Delta^{n_j}$ be a product of simplices as in (3.1) with $m\geqslant 2$, $n\geqslant 3$ and \bar{P} is a vertex cut of P along a vertex $\tilde{\mathbf{v}}$ such that $\det A_{\tilde{\mathbf{v}}}=(-1)^m$. Then $H^*(X(\bar{P},\bar{\lambda}))$ and $H^*(X(\bar{P},\bar{\lambda}'))$ are isomorphic as graded rings if and only if $H^*(X(P,\lambda))$ and $H^*(X(P,\lambda'))$ are isomorphic as graded rings.

References

- M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991), no. 2, 417–451. MR 1104531
- Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry. MR 1234037

• William Fulton, Introduction to toric varieties, Annals of Mathematics

- Suyong Choi, Mikiya Masuda, and Dong Youp Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), no. 1, 109–129. MR 2666127
- Sho Hasui, Hideya Kuwata, Mikiya Masuda, and Seonjeong Park, Classification of toric manifolds over an n-cube with one vertex cut, Int. Math. Res. Not. IMRN (2020), no. 16, 4890–4941. MR 4139029
- M. Masuda and T. E. Panov, Semi-free circle actions, Bott towers, and quasitoric manifolds, Mat. Sb. 199 (2008), no. 8, 95–122. MR 2452268
- Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, vol. 24, American Mathematical Society, Providence, RI, 2002. MR 1897064

THANK YOU