On cohomology of (quasi)toric manifolds over a vertex cut of a finite product of simplicies

Dr. Subhankar Sau
(Joint work with Dr. Soumen Sarkar)
Mathematics Statistics Unit
Indian Statistical Institute Kolkata
Kolkata-700108

March 23, 2022

Toric Topology 2022 in Osaka

Contents

(1) Motivation
(2) Quasitoric manifold and its cohomology
(3) Quasitoric manifold over product of simplices
(4) Toric manifold and Quasitoric manifold
(5) Quasitoric manifold over vertex of product of simplices

Motivation

- Suyong Choi, Mikiya Masuda, and Dong Youp Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), no. 1, 109-129. MR 2666127
- Sho Hasui, Hideya Kuwata, Mikiya Masuda, and Seonjeong Park, Classification of toric manifolds over an n-cube with one vertex cut, Int. Math. Res. Not. IMRN (2020), no. 16, 4890-4941. MR 4139029

Quasitoric manifold and its cohomology

- An n-dimensional simple polytope is an n-dimensional convex polytope such that at each vertex (zero dimensional face) exactly n facets (codimension one faces) intersect.

Quasitoric manifold and its cohomology

- An n-dimensional simple polytope is an n-dimensional convex polytope such that at each vertex (zero dimensional face) exactly n facets (codimension one faces) intersect.
- We denote the vertex set and facet set of a simple polytope Q by $V(Q)$ and $\mathcal{F}(Q)=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ respectively.

Quasitoric manifold and its cohomology

- An n-dimensional simple polytope is an n-dimensional convex polytope such that at each vertex (zero dimensional face) exactly n facets (codimension one faces) intersect.
- We denote the vertex set and facet set of a simple polytope Q by $V(Q)$ and $\mathcal{F}(Q)=\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ respectively.
- Let Q be an n-dimensional simple polytope and F a d-dimensional face in Q. Then $F=\bigcap_{j=1}^{n-d} F_{i j}$ for some unique facets $F_{i_{1}}, \ldots, F_{i_{n-d}}$ of Q.
- We call $\bigcap_{j=1}^{s} F_{i j}$ a minimal non-face of Q if

$$
\bigcap_{j=1}^{s} F_{i j}=\varnothing \text { and } \bigcap_{\substack{j=1 \\ j \neq t}}^{s} F_{i j} \neq \varnothing
$$

for some $1 \leqslant t \leqslant s$.

- Let $\lambda: \mathcal{F}(Q) \rightarrow \mathbb{Z}^{n}$ be a function such that
$\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)\right\}$ span a k - dimensional unimodular submodule in \mathbb{Z}^{n}

$$
\begin{equation*}
\text { whenever } \bigcap_{j=1}^{k} F_{i j} \neq \varnothing \text {. } \tag{2.1}
\end{equation*}
$$

- Let $\lambda: \mathcal{F}(Q) \rightarrow \mathbb{Z}^{n}$ be a function such that
$\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)\right\}$ span a k - dimensional unimodular submodule in \mathbb{Z}^{n}

$$
\begin{equation*}
\text { whenever } \bigcap_{j=1}^{k} F_{i j} \neq \varnothing \text {. } \tag{2.1}
\end{equation*}
$$

Then λ is called a characteristic function on Q and the pair (Q, λ) called a characteristic pair.

- Let $\lambda: \mathcal{F}(Q) \rightarrow \mathbb{Z}^{n}$ be a function such that
$\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)\right\}$ span a k-dimensional unimodular submodule in \mathbb{Z}^{n}

$$
\begin{equation*}
\text { whenever } \bigcap_{j=1}^{k} F_{i j} \neq \varnothing \text {. } \tag{2.1}
\end{equation*}
$$

Then λ is called a characteristic function on Q and the pair (Q, λ) called a characteristic pair.

- Each λ_{i} determines a line in \mathbb{R}^{n}, whose image under $\exp : \mathbb{R}^{n} \rightarrow T^{n}=\left(\mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{R}\right) / \mathbb{Z}^{n}$ is a circle subgroup, denoted by T_{i}.
- Let $\lambda: \mathcal{F}(Q) \rightarrow \mathbb{Z}^{n}$ be a function such that
$\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)\right\}$ span a k - dimensional unimodular submodule in \mathbb{Z}^{n}

$$
\begin{equation*}
\text { whenever } \bigcap_{j=1}^{k} F_{i j} \neq \varnothing \text {. } \tag{2.1}
\end{equation*}
$$

Then λ is called a characteristic function on Q and the pair (Q, λ) called a characteristic pair.

- Each λ_{i} determines a line in \mathbb{R}^{n}, whose image under $\exp : \mathbb{R}^{n} \rightarrow T^{n}=\left(\mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{R}\right) / \mathbb{Z}^{n}$ is a circle subgroup, denoted by T_{i}.
- $T_{F}:=\left\langle T_{i_{1}}, \ldots, T_{i_{n-d}}\right\rangle$ where $F=\bigcap_{j=1}^{n-d} F_{i_{j}}$.
- Let $\lambda: \mathcal{F}(Q) \rightarrow \mathbb{Z}^{n}$ be a function such that
$\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)\right\}$ span a k - dimensional unimodular submodule in \mathbb{Z}^{n}

$$
\begin{equation*}
\text { whenever } \bigcap_{j=1}^{k} F_{i j} \neq \varnothing \text {. } \tag{2.1}
\end{equation*}
$$

Then λ is called a characteristic function on Q and the pair (Q, λ) called a characteristic pair.

- Each λ_{i} determines a line in \mathbb{R}^{n}, whose image under $\exp : \mathbb{R}^{n} \rightarrow T^{n}=\left(\mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{R}\right) / \mathbb{Z}^{n}$ is a circle subgroup, denoted by T_{i}.
- $T_{F}:=\left\langle T_{i_{1}}, \ldots, T_{i_{n-d}}\right\rangle$ where $F=\bigcap_{j=1}^{n-d} F_{i_{j}}$.
- Consider $X(Q, \lambda):=\left(T^{n} \times Q\right) / \sim$,

$$
\begin{equation*}
(t, x) \sim(s, y) \text { if and only if } x=y \in F \text { and } t^{-1} s \in T_{F} . \tag{2.2}
\end{equation*}
$$

- Let $\lambda: \mathcal{F}(Q) \rightarrow \mathbb{Z}^{n}$ be a function such that
$\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)\right\}$ span a k - dimensional unimodular submodule in \mathbb{Z}^{n}

$$
\begin{equation*}
\text { whenever } \bigcap_{j=1}^{k} F_{i j} \neq \varnothing \text {. } \tag{2.1}
\end{equation*}
$$

Then λ is called a characteristic function on Q and the pair (Q, λ) called a characteristic pair.

- Each λ_{i} determines a line in \mathbb{R}^{n}, whose image under $\exp : \mathbb{R}^{n} \rightarrow T^{n}=\left(\mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{R}\right) / \mathbb{Z}^{n}$ is a circle subgroup, denoted by T_{i}.
- $T_{F}:=\left\langle T_{i_{1}}, \ldots, T_{i_{n-d}}\right\rangle$ where $F=\bigcap_{j=1}^{n-d} F_{i_{j}}$.
- Consider $X(Q, \lambda):=\left(T^{n} \times Q\right) / \sim$,

$$
\begin{equation*}
(t, x) \sim(s, y) \text { if and only if } x=y \in F \text { and } t^{-1} s \in T_{F} . \tag{2.2}
\end{equation*}
$$

The quotient space $X(Q, \lambda)$ has a manifold structure with a natural T^{n} action.

- Let $\lambda: \mathcal{F}(Q) \rightarrow \mathbb{Z}^{n}$ be a function such that
$\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)\right\}$ span a k - dimensional unimodular submodule in \mathbb{Z}^{n}

$$
\begin{equation*}
\text { whenever } \bigcap_{j=1}^{k} F_{i j} \neq \varnothing \text {. } \tag{2.1}
\end{equation*}
$$

Then λ is called a characteristic function on Q and the pair (Q, λ) called a characteristic pair.

- Each λ_{i} determines a line in \mathbb{R}^{n}, whose image under $\exp : \mathbb{R}^{n} \rightarrow T^{n}=\left(\mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{R}\right) / \mathbb{Z}^{n}$ is a circle subgroup, denoted by T_{i}.
- $T_{F}:=\left\langle T_{i_{1}}, \ldots, T_{i_{n-d}}\right\rangle$ where $F=\bigcap_{j=1}^{n-d} F_{i_{j}}$.
- Consider $X(Q, \lambda):=\left(T^{n} \times Q\right) / \sim$,

$$
\begin{equation*}
(t, x) \sim(s, y) \text { if and only if } x=y \in F \text { and } t^{-1} s \in T_{F} . \tag{2.2}
\end{equation*}
$$

The quotient space $X(Q, \lambda)$ has a manifold structure with a natural T^{n} action. The orbit map is $\pi: X(Q, \lambda) \rightarrow Q$.

- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q):=\left\{F_{1}, \ldots, F_{r}\right\}$.
${ }^{1}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991)
- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q):=\left\{F_{1}, \ldots, F_{r}\right\}$. We assign the indeterminate x_{i} to the facet F_{i} for $i=1, \ldots, r$.

[^0] Duke Math. J. 62(1991)

- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q):=\left\{F_{1}, \ldots, F_{r}\right\}$. We assign the indeterminate x_{i} to the facet F_{i} for $i=1, \ldots, r$.
- Then the integral cohomology ring of $X(Q, \lambda)$ following ${ }^{1}$ is

$$
\begin{equation*}
H^{*}(X(Q, \lambda) ; \mathbb{Z})=\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right] /(I+J) . \tag{2.3}
\end{equation*}
$$

[^1]- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q):=\left\{F_{1}, \ldots, F_{r}\right\}$. We assign the indeterminate x_{i} to the facet F_{i} for $i=1, \ldots, r$.
- Then the integral cohomology ring of $X(Q, \lambda)$ following ${ }^{1}$ is

$$
\begin{equation*}
H^{*}(X(Q, \lambda) ; \mathbb{Z})=\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right] /(I+J) . \tag{2.3}
\end{equation*}
$$

- Here I is the Stanley-Reisner ideal of Q generated by all square-free monomials asociated to the minimal non-faces of Q.

[^2]- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q):=\left\{F_{1}, \ldots, F_{r}\right\}$. We assign the indeterminate x_{i} to the facet F_{i} for $i=1, \ldots, r$.
- Then the integral cohomology ring of $X(Q, \lambda)$ following ${ }^{1}$ is

$$
\begin{equation*}
H^{*}(X(Q, \lambda) ; \mathbb{Z})=\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right] /(I+J) . \tag{2.3}
\end{equation*}
$$

- Here I is the Stanley-Reisner ideal of Q generated by all square-free monomials asociated to the minimal non-faces of Q. That is $I=\left\langle x_{i_{1}} \ldots x_{i_{s}}\right| \bigcap_{j=1}^{s} F_{i_{j}}$ is a minimal non face \rangle.

[^3]- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q):=\left\{F_{1}, \ldots, F_{r}\right\}$. We assign the indeterminate x_{i} to the facet F_{i} for $i=1, \ldots, r$.
- Then the integral cohomology ring of $X(Q, \lambda)$ following ${ }^{1}$ is

$$
\begin{equation*}
H^{*}(X(Q, \lambda) ; \mathbb{Z})=\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right] /(I+J) . \tag{2.3}
\end{equation*}
$$

- Here I is the Stanley-Reisner ideal of Q generated by all square-free monomials asociated to the minimal non-faces of Q. That is $I=\left\langle x_{i_{1}} \ldots x_{i_{s}}\right| \bigcap_{j=1}^{s} F_{i_{j}}$ is a minimal non face \rangle.
- Let

$$
\begin{equation*}
\lambda_{J}=\sum_{j=1}^{r} \lambda_{j} x_{j} . \tag{2.4}
\end{equation*}
$$

[^4]- Let (Q, λ) be a characteristic pair over an n-dimensional simple polytope Q with $\mathcal{F}(Q):=\left\{F_{1}, \ldots, F_{r}\right\}$. We assign the indeterminate x_{i} to the facet F_{i} for $i=1, \ldots, r$.
- Then the integral cohomology ring of $X(Q, \lambda)$ following ${ }^{1}$ is

$$
\begin{equation*}
H^{*}(X(Q, \lambda) ; \mathbb{Z})=\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right] /(I+J) . \tag{2.3}
\end{equation*}
$$

- Here I is the Stanley-Reisner ideal of Q generated by all square-free monomials asociated to the minimal non-faces of Q. That is $I=\left\langle x_{i_{1}} \ldots x_{i_{s}}\right| \bigcap_{j=1}^{s} F_{i_{j}}$ is a minimal non face \rangle.
- Let

$$
\begin{equation*}
\lambda_{J}=\sum_{j=1}^{r} \lambda_{j} x_{j} . \tag{2.4}
\end{equation*}
$$

The ideal J is generated by the n coordinates of λ_{J}.

[^5]
Example

$H^{*}(X(P, \lambda) ; \mathbb{Z})=\mathbb{Z}\left[x_{1}, \ldots, x_{5}\right] /(I+J)$
where $I=\left\langle x_{1} x_{2} x_{3}, x_{4} x_{5}\right\rangle$
and
$\lambda_{J}=\sum_{j=1}^{5} \lambda_{j} x_{j}$
$=\left(-x_{1}+x_{2}+x_{4},-x_{1}+x_{3}+x_{5}, 2 x_{1}-x_{4}+x_{5}\right)$.
Thus $J=$
$\left\langle-x_{1}+x_{2}+x_{4},-x_{1}+x_{3}+x_{5}, 2 x_{1}-x_{4}+x_{5}\right\rangle$.
This implies

$$
H^{*}(X(P, \lambda) ; \mathbb{Z})=\mathbb{Z}\left[x_{1}, x_{4}\right] / \bar{l}
$$

where
$\bar{I}=\left\langle x_{1}\left(x_{1}-x_{4}\right)\left(3 x_{1}-x_{4}\right), x_{4}\left(-2 x_{1}+x_{4}\right)\right\rangle$.

Quasitoric manifold over product of simplices

- Let

$$
\begin{equation*}
P=\prod_{j=1}^{m} \Delta^{n_{j}} \tag{3.1}
\end{equation*}
$$

Quasitoric manifold over product of simplices

- Let

$$
\begin{equation*}
P=\prod_{j=1}^{m} \Delta^{n_{j}} \tag{3.1}
\end{equation*}
$$

and the dimension of P is $n:=\sum_{j=1}^{m} n_{j}$.

Quasitoric manifold over product of simplices

- Let

$$
\begin{equation*}
P=\prod_{j=1}^{m} \Delta^{n_{j}} \tag{3.1}
\end{equation*}
$$

and the dimension of P is $n:=\sum_{j=1}^{m} n_{j}$. Let us denote $N_{s}:=\sum_{j=1}^{s} n_{j}$ for $s=1, \ldots, m$.

Quasitoric manifold over product of simplices

- Let

$$
\begin{equation*}
P=\prod_{j=1}^{m} \Delta^{n_{j}} \tag{3.1}
\end{equation*}
$$

and the dimension of P is $n:=\sum_{j=1}^{m} n_{j}$. Let us denote $N_{s}:=\sum_{j=1}^{s} n_{j}$ for $s=1, \ldots, m$. Also we assume $N_{0}:=0$.

Quasitoric manifold over product of simplices

- Let

$$
\begin{equation*}
P=\prod_{j=1}^{m} \Delta^{n_{j}} \tag{3.1}
\end{equation*}
$$

and the dimension of P is $n:=\sum_{j=1}^{m} n_{j}$. Let us denote $N_{s}:=\sum_{j=1}^{s} n_{j}$ for $s=1, \ldots, m$. Also we assume $N_{0}:=0$.

- Let $V\left(\Delta^{n_{j}}\right):=\left\{v_{0}^{j}, \ldots, v_{n_{j}}^{j}\right\}$

Quasitoric manifold over product of simplices

- Let

$$
\begin{equation*}
P=\prod_{j=1}^{m} \Delta^{n_{j}} \tag{3.1}
\end{equation*}
$$

and the dimension of P is $n:=\sum_{j=1}^{m} n_{j}$. Let us denote $N_{s}:=\sum_{j=1}^{s} n_{j}$ for $s=1, \ldots, m$. Also we assume $N_{0}:=0$.

- Let $V\left(\Delta^{n_{j}}\right):=\left\{v_{0}^{j}, \ldots, v_{n_{j}}^{j}\right\}$ and $\mathcal{F}\left(\Delta^{n_{j}}\right):=\left\{f_{0}^{j}, \ldots f_{n_{j}}^{j}\right\}$ where the unique facet $f_{k_{j}}^{j}$ does not contain the vertex $v_{k_{j}}^{j}$ in $\Delta^{n_{j}}$ for $0 \leqslant k_{j} \leqslant n_{j}$ for $j=1, \ldots, m$.

Quasitoric manifold over product of simplices

- Let

$$
\begin{equation*}
P=\prod_{j=1}^{m} \Delta^{n_{j}} \tag{3.1}
\end{equation*}
$$

and the dimension of P is $n:=\sum_{j=1}^{m} n_{j}$. Let us denote $N_{s}:=\sum_{j=1}^{s} n_{j}$ for $s=1, \ldots, m$. Also we assume $N_{0}:=0$.

- Let $V\left(\Delta^{n_{j}}\right):=\left\{v_{0}^{j}, \ldots, v_{n_{j}}^{j}\right\}$ and $\mathcal{F}\left(\Delta^{n_{j}}\right):=\left\{f_{0}^{j}, \ldots f_{n_{j}}^{j}\right\}$ where the unique facet $f_{k_{j}}^{j}$ does not contain the vertex $v_{k_{j}}^{j}$ in $\Delta^{n_{j}}$ for $0 \leqslant k_{j} \leqslant n_{j}$ for $j=1, \ldots, m$. Then

$$
\begin{align*}
V(P) & =\left\{v_{\ell_{1} \ell_{2} \ldots \ell_{m}}:=\left(v_{\ell_{1}}^{1}, v_{\ell_{2}}^{2}, \ldots, v_{\ell_{m}}^{m}\right) \mid 0 \leqslant \ell_{j} \leqslant n_{j}, j, \ldots, m\right\} \tag{3.2}\\
\mathcal{F}(P) & =\left\{F_{k_{j}}^{j} \mid 0 \leqslant k_{j} \leqslant n_{j}, 1 \leqslant j \leqslant m\right\} \\
& \text { where } F_{k_{j}}^{j}:=\Delta^{n_{1}} \times \cdots \times \Delta^{n_{j-1}} \times f_{k_{j}}^{j} \times \Delta^{n_{j+1}} \times \cdots \times \Delta^{n_{m}} .
\end{align*}
$$

- Notice that
$\mathbf{v}_{0}:=v_{0 \ldots 0}=F_{1}^{1} \cap \cdots \cap F_{n_{1}}^{1} \cap \cdots \cap F_{1}^{j} \cap \ldots F_{n_{j}}^{j} \cap \cdots \cap F_{1}^{m} \cap \cdots \cap F_{n_{m}}^{m}$.
- Let

$$
\begin{equation*}
\lambda: \mathcal{F}(P) \rightarrow \mathbb{Z}^{n} \tag{3.3}
\end{equation*}
$$

be a characteristic function on P where

$$
\begin{gathered}
\lambda\left(F_{1}^{1}\right)=e_{1}, \ldots, \lambda\left(F_{n_{1}}^{1}\right)=e_{n_{1}}, \\
\vdots \\
\lambda\left(F_{1}^{j}\right)=e_{N_{j-1}+1}, \ldots, \lambda\left(F_{n_{j}}^{j}\right)=e_{N_{j}}, \\
\vdots \\
\lambda\left(F_{1}^{m}\right)=e_{N_{m-1}+1}, \ldots, \lambda\left(F_{n_{m}}^{m}\right)=e_{n} .
\end{gathered}
$$

For the remaining m facets $F_{0}^{1}, \ldots, F_{0}^{m}$, we denote

$$
\begin{equation*}
\mathbf{a}_{j}:=\lambda\left(F_{0}^{j}\right) \in \mathbb{Z}^{n} \quad \text { for } j=1, \ldots, m . \tag{3.5}
\end{equation*}
$$

Example

- $v_{1}=F_{0}$
$F_{1}^{2} \longmapsto e_{3}$

Theorem $3.1\left(^{2}\right)$

Let $X(P, \lambda)$ be a quasitoric manifold where $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ is a product of simplices as in (3.1) and λ is defined following (3.4) and (3.5). Then

$$
\begin{equation*}
H^{*}(X(P, \lambda) ; \mathbb{Z}) \cong \mathbb{Z}\left[y_{1}, \ldots, y_{m}\right] / \mathcal{L}, \tag{3.6}
\end{equation*}
$$

where the indeterminate y_{j} is assigned to the facet F_{0}^{j} for $j=1, \ldots, m$ and \mathcal{L} is the ideal generated by

$$
y_{j} \prod_{\ell=1}^{n_{j}}\left(a_{1 \ell}^{j} y_{1}+a_{2 \ell}^{j} y_{2}+\cdots+a_{m \ell}^{j} y_{m}\right) \quad \text { for } j=1, \ldots, m .
$$

[^6]
Toric manifold and Quasitoric manifold

A simplicial complex \mathcal{K} is a set of simplices that satisfies the following

- Every face of a simplex from \mathcal{K} is also in \mathcal{K}.
- The non-empty intersection of any two simplices $\sigma_{1}, \sigma_{2} \in \mathcal{K}$ is a face of both σ_{1} and σ_{2}.

Toric manifold and Quasitoric manifold

A simplicial complex \mathcal{K} is a set of simplices that satisfies the following

- Every face of a simplex from \mathcal{K} is also in \mathcal{K}.
- The non-empty intersection of any two simplices $\sigma_{1}, \sigma_{2} \in \mathcal{K}$ is a face of both σ_{1} and σ_{2}.

Let \mathcal{K} be an ($n-1$)-dimensional simplicial complex with m vertices which we denote by $\mathcal{V}(\mathcal{K})=\left\{v_{1}, \ldots, v_{m}\right\}$.

Toric manifold and Quasitoric manifold

A simplicial complex \mathcal{K} is a set of simplices that satisfies the following

- Every face of a simplex from \mathcal{K} is also in \mathcal{K}.
- The non-empty intersection of any two simplices $\sigma_{1}, \sigma_{2} \in \mathcal{K}$ is a face of both σ_{1} and σ_{2}.

Let \mathcal{K} be an $(n-1)$-dimensional simplicial complex with m vertices which we denote by $\mathcal{V}(\mathcal{K})=\left\{v_{1}, \ldots, v_{m}\right\}$. Define a map

$$
\lambda: \mathcal{V}(\mathcal{K}) \rightarrow \mathbb{Z}^{n} .
$$

We denote $\lambda\left(v_{i}\right)=\lambda_{i}$ for $i=1, \ldots, m$.

Toric manifold and Quasitoric manifold

A simplicial complex \mathcal{K} is a set of simplices that satisfies the following

- Every face of a simplex from \mathcal{K} is also in \mathcal{K}.
- The non-empty intersection of any two simplices $\sigma_{1}, \sigma_{2} \in \mathcal{K}$ is a face of both σ_{1} and σ_{2}.

Let \mathcal{K} be an $(n-1)$-dimensional simplicial complex with m vertices which we denote by $\mathcal{V}(\mathcal{K})=\left\{v_{1}, \ldots, v_{m}\right\}$. Define a map

$$
\lambda: \mathcal{V}(\mathcal{K}) \rightarrow \mathbb{Z}^{n} .
$$

We denote $\lambda\left(v_{i}\right)=\lambda_{i}$ for $i=1, \ldots, m$. For each $I \in \mathcal{K}$, one can define the following cone

$$
C(I):=\left\{\sum_{v_{i} \in I} t_{i} \lambda_{i} \in \mathbb{R}^{n} \mid t_{i} \in \mathbb{R}_{\geqslant 0} \text { for all } v_{i} \in I\right\} .
$$

Definition 4.1

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:
(1) For $I=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in \mathcal{K}$, the vectors $\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}$ are linearly independent over \mathbb{R}.

[^7]
Definition 4.1

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:
(1) For $I=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in \mathcal{K}$, the vectors $\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}$ are linearly independent over \mathbb{R}.
(2) $C(I) \cap C(J)=C(I \cap J)$ for $I, J \in \mathcal{K}$.

[^8]
Definition 4.1

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:
(1) For $I=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in \mathcal{K}$, the vectors $\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}$ are linearly independent over \mathbb{R}.
(2) $C(I) \cap C(J)=C(I \cap J)$ for $I, J \in \mathcal{K}$.

If $\bigcup_{I \in \mathcal{K}} C(I)=\mathbb{R}^{n}$, then the fan (\mathcal{K}, λ) is called complete.

[^9]
Definition 4.1

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:
(1) For $I=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in \mathcal{K}$, the vectors $\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}$ are linearly independent over \mathbb{R}.
(2) $C(I) \cap C(J)=C(I \cap J)$ for $I, J \in \mathcal{K}$.

If $\bigcup_{I \in \mathcal{K}} C(I)=\mathbb{R}^{n}$, then the fan (\mathcal{K}, λ) is called complete.If $\left\{\lambda_{i}: v_{i} \in I\right\}$ forms a part of a basis of \mathbb{Z}^{n} for any $I \in \mathcal{K}$, then the fan is called non-singular.

[^10]
Definition 4.1

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:
(1) For $I=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in \mathcal{K}$, the vectors $\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}$ are linearly independent over \mathbb{R}.
(2) $C(I) \cap C(J)=C(I \cap J)$ for $I, J \in \mathcal{K}$.

If $\bigcup_{I \in \mathcal{K}} C(I)=\mathbb{R}^{n}$, then the fan (\mathcal{K}, λ) is called complete.If $\left\{\lambda_{i}: v_{i} \in I\right\}$ forms a part of a basis of \mathbb{Z}^{n} for any $I \in \mathcal{K}$, then the fan is called non-singular.

Definition 4.2

A complete, non-singular toric variety is called a toric manifold.

[^11]
Definition 4.1

The pair (\mathcal{K}, λ) is called a (simplicial) fan of dimension n over \mathcal{K} if it satisfies:
(1) For $I=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in \mathcal{K}$, the vectors $\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}$ are linearly independent over \mathbb{R}.
(2) $C(I) \cap C(J)=C(I \cap J)$ for $I, J \in \mathcal{K}$.

If $\bigcup_{I \in \mathcal{K}} C(I)=\mathbb{R}^{n}$, then the fan (\mathcal{K}, λ) is called complete.If $\left\{\lambda_{i}: v_{i} \in I\right\}$ forms a part of a basis of \mathbb{Z}^{n} for any $I \in \mathcal{K}$, then the fan is called non-singular.

Definition 4.2

A complete, non-singular toric variety is called a toric manifold.

Proposition $4.3\left({ }^{3}\right)$

There exists a one to one correspondence between the toric varities of complex dimension n and rational fans of dimension n.

[^12]
Definition 4.4 (Distance function)

Let P be a polytope and v_{1}, v_{2} two different vertices in P. A path between v_{1} and v_{2} is a sequence of edges $\xi_{1}, \xi_{2}, \ldots, \xi_{d}$ such that $v_{1} \in \xi_{1}, v_{2} \in \xi_{d}$ and $\xi_{i} \cap \xi_{i+1}$ is a vertex of both for $i=1, \ldots,(d-1)$. The distance between two vertices v_{1} and v_{2} is the minimum d and it is denoted by $D\left(v_{1}, v_{2}\right)$.

$$
\begin{gathered}
D\left(v_{1}, v_{2}\right)=1 \\
D\left(v_{1}, v_{3}\right)=3 \\
D\left(v_{3}, v_{2}\right)=2 \\
D\left(v_{i}, v_{i}\right)=0 \forall i
\end{gathered}
$$

Figure: A distance function on the vertices of a polytope.

- Let (P, λ) be a characteristic pair where P is a product of m simplices and λ a characteristic function on P as defined following (3.4) and (3.5).
- Let (P, λ) be a characteristic pair where P is a product of m simplices and λ a characteristic function on P as defined following (3.4) and (3.5).
- Let \mathbf{v} be a vertex in P. So, $\mathbf{v}=\bigcap_{j=1}^{n} F_{j}$ for some unique facets F_{j} 's of P.
- Let (P, λ) be a characteristic pair where P is a product of m simplices and λ a characteristic function on P as defined following (3.4) and (3.5).
- Let \mathbf{v} be a vertex in P. So, $\mathbf{v}=\bigcap_{j=1}^{n} F_{j}$ for some unique facets F_{j} 's of P.
- We fix the order of colums at $\mathbf{v}_{0}:=v_{0} \ldots 0$

$$
\left.\begin{array}{rl}
A_{\mathbf{v}_{0}} & = \\
& =\left(\begin{array}{lllllllll}
\lambda\left(F_{1}^{1}\right) & \ldots & \lambda\left(F_{n_{1}}^{1}\right) & \ldots & \lambda\left(F_{1}^{m}\right) & \ldots & \ldots & \lambda\left(F_{n_{m}}^{m}\right)
\end{array}\right) \\
e_{1} & \ldots
\end{array} e_{n_{1}} \quad \ldots \quad \ldots e_{N_{m-1}+1} \quad \ldots . \quad e_{n}\right) . ~ l
$$

- Let (P, λ) be a characteristic pair where P is a product of m simplices and λ a characteristic function on P as defined following (3.4) and (3.5).
- Let \mathbf{v} be a vertex in P. So, $\mathbf{v}=\bigcap_{j=1}^{n} F_{j}$ for some unique facets F_{j} 's of P.
- We fix the order of colums at $\mathbf{v}_{0}:=v_{0} \ldots 0$

$$
\begin{aligned}
& A_{\mathbf{v}_{0}}:=\left(\begin{array}{lllllll}
\lambda\left(F_{1}^{1}\right) & \ldots & \lambda\left(F_{n_{1}}^{1}\right) & \ldots & \lambda\left(F_{1}^{m}\right) & \ldots & \ldots
\end{array} \lambda\left(F_{n_{m}}^{m}\right)\right) \\
& =\left(\begin{array}{llllllll}
e_{1} & \ldots & e_{n_{1}} & \ldots & \ldots & e_{N_{m-1}+1} & \ldots & e_{n}
\end{array}\right) .
\end{aligned}
$$

- Let $D\left(\mathbf{v}, \mathbf{v}_{0}\right)=d>0$. Then we may consider a path of length d from \mathbf{v}_{0} to \mathbf{v}.
- Let $D\left(\mathbf{v}, \mathbf{v}_{0}\right)=d>0$. Then we may consider a path of length d from \mathbf{v}_{0} to \mathbf{v}.
- That is if ξ_{1}, \ldots, ξ_{d} is the sequence of edges joining \mathbf{v}_{0} to \mathbf{v} such that $\mathbf{v}_{0} \in \xi_{1}$, $v \in \xi_{d}$ and $\xi_{i} \cap \xi_{i+1}=\mathbf{v}_{i}$ then the matrix $A_{\mathbf{v}_{i+1}}$ is formed by a replacement of exactly one standard basis vector in the columns of $A_{\mathbf{v}_{i}}$ for $i=1, \ldots, d-1$.
- Let $D\left(\mathbf{v}, \mathbf{v}_{0}\right)=d>0$. Then we may consider a path of length d from \mathbf{v}_{0} to \mathbf{v}.
- That is if ξ_{1}, \ldots, ξ_{d} is the sequence of edges joining \mathbf{v}_{0} to \mathbf{v} such that $\mathbf{v}_{0} \in \xi_{1}$, $v \in \xi_{d}$ and $\xi_{i} \cap \xi_{i+1}=\mathbf{v}_{i}$ then the matrix $A_{\mathbf{v}_{i+1}}$ is formed by a replacement of exactly one standard basis vector in the columns of $A_{\mathbf{v}_{i}}$ for $i=1, \ldots, d-1$.
- Let $\mathbf{v} \in V(P)$. Then $\mathbf{v}=v_{\ell_{1} \ell_{2} \ldots \ell_{m}}$ for some $0 \leqslant \ell_{j} \leqslant n_{j}, j=1, \ldots, m$ and

$$
\mathbf{v}=\bigcap_{\substack{j=1 \\ k_{j} \neq \ell_{j}}}^{m} F_{k_{j}}^{j} .
$$

- Let $D\left(\mathbf{v}, \mathbf{v}_{0}\right)=d>0$. Then we may consider a path of length d from \mathbf{v}_{0} to \mathbf{v}.
- That is if ξ_{1}, \ldots, ξ_{d} is the sequence of edges joining \mathbf{v}_{0} to \mathbf{v} such that $\mathbf{v}_{0} \in \xi_{1}$, $v \in \xi_{d}$ and $\xi_{i} \cap \xi_{i+1}=\mathbf{v}_{i}$ then the matrix $A_{\mathbf{v}_{i+1}}$ is formed by a replacement of exactly one standard basis vector in the columns of $A_{\mathbf{v}_{i}}$ for $i=1, \ldots, d-1$.
- Let $\mathbf{v} \in V(P)$. Then $\mathbf{v}=v_{\ell_{1} \ell_{2} \ldots \ell_{m}}$ for some $0 \leqslant \ell_{j} \leqslant n_{j}, j=1, \ldots, m$ and

$$
\mathbf{v}=\bigcap_{\substack{j=1 \\ k_{j} \neq \ell_{j}}}^{m} F_{k_{j}}^{j} .
$$

- If $\ell_{j} \neq 0$ for $j \in\{1, \ldots, m\}$, then $e_{N_{j-1}+\ell_{j}}$ is replaced by \mathbf{a}_{j} by keeping the order of other columns of $A_{\mathrm{v}_{0}}$ intact.
- Note that the matrix A_{v} does not alter by the choice of the path if we choose any other shortest path of length d.
- Let $D\left(\mathbf{v}, \mathbf{v}_{0}\right)=d>0$. Then we may consider a path of length d from \mathbf{v}_{0} to \mathbf{v}.
- That is if ξ_{1}, \ldots, ξ_{d} is the sequence of edges joining \mathbf{v}_{0} to \mathbf{v} such that $\mathbf{v}_{0} \in \xi_{1}$, $v \in \xi_{d}$ and $\xi_{i} \cap \xi_{i+1}=\mathbf{v}_{i}$ then the matrix $A_{\mathbf{v}_{i+1}}$ is formed by a replacement of exactly one standard basis vector in the columns of $A_{\mathbf{v}_{i}}$ for $i=1, \ldots, d-1$.
- Let $\mathbf{v} \in V(P)$. Then $\mathbf{v}=v_{\ell_{1} \ell_{2} \ldots \ell_{m}}$ for some $0 \leqslant \ell_{j} \leqslant n_{j}, j=1, \ldots, m$ and

$$
\mathbf{v}=\bigcap_{\substack{j=1 \\ k_{j} \neq \ell_{j}}}^{m} F_{k_{j}}^{j}
$$

- If $\ell_{j} \neq 0$ for $j \in\{1, \ldots, m\}$, then $e_{N_{j-1}+\ell_{j}}$ is replaced by \mathbf{a}_{j} by keeping the order of other columns of $A_{\mathrm{v}_{0}}$ intact.
- Note that the matrix A_{v} does not alter by the choice of the path if we choose any other shortest path of length d.
- If \mathbf{v} is a vertex such that $D\left(\mathbf{v}, \mathbf{v}_{0}\right)=m$, i.e., $\ell_{j} \neq 0$ for all $j=1, \ldots, m$. Then the matrix A_{v} is given by

$$
\begin{aligned}
A_{\mathbf{v}}= & \left(\begin{array}{llllllllllll}
e_{1} & \ldots & e_{\ell_{1}-1} & \mathbf{a}_{1} & e_{\ell_{1}+1} & \ldots & e_{N_{1}} & e_{N_{1}+1} & \ldots & e_{N_{1}+\ell_{2}-1} & \mathbf{a}_{2} & e_{N_{1}+\ell_{2}+1} \\
e_{N_{2}} & \ldots & e_{N_{m-1}+1}+ & \ldots & e_{N_{m-1}+\ell_{m}-1} & \mathbf{a}_{m} & e_{N_{m-1}+\ell_{m}+1} & \ldots & e_{N_{m}}
\end{array}\right)
\end{aligned}
$$

Let σ be an n-dimensional nonsingular cone in \mathbb{R}^{n}. Then σ is generated by n linearly independent vectors $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ in \mathbb{R}^{n}. Let $M:=\left(\xi_{1}, \ldots, \xi_{n}\right)$ be the nonsingular $n \times n$ matrix. By $\operatorname{det}(\sigma)$ we denote the determinant of the matrix M.

Lemma 4.5

Let σ_{1} and σ_{2} be two nonsingular cones in \mathbb{R}^{n} of dimension n. If $\sigma_{1} \cap \sigma_{2}$ is a face of dimension $n-1$ then $\operatorname{det}\left(\sigma_{1}\right)$ and $\operatorname{det}\left(\sigma_{2}\right)$ have differnt signs.

Theorem 4.6

Let P be a finite product of simplices as (3.1) and λ a characteristic function on P as in (3.3). If $X(P, \lambda)$ is a toric manifold then

$$
\operatorname{det} A_{\mathbf{v}}= \begin{cases}-1 & \text { if } D\left(\mathbf{v}, \mathbf{v}_{0}\right)=\text { odd } \tag{4.2}\\ +1 & \text { if } D\left(\mathbf{v}, \mathbf{v}_{0}\right)=\text { even }\end{cases}
$$

where \mathbf{v}_{0} denotes the vertex $\mathrm{v}_{0} \ldots .$.

Theorem 4.7

Let P be a product of two simplices and λ a characteristic function defined on P as in (3.3) such that for any vertex $\mathbf{v} \in V(P)$ the following holds:

$$
\operatorname{det} A_{\mathbf{v}}= \begin{cases}-1 & \text { if } D\left(\mathbf{v}, \mathbf{v}_{0}\right)=\text { odd } \tag{4.3}\\ +1 & \text { if } D\left(\mathbf{v}, \mathbf{v}_{0}\right)=\text { even }\end{cases}
$$

Then $X(P, \lambda)$ is a toric manifold.

Quasitoric manifold over vertex of product of simplices

Figure: A vertex cut of a prism where the facets and vertices are induced from Δ^{2} and I.

Quasitoric manifold over vertex of product of simplices

Figure: A vertex cut of a prism where the facets and vertices are induced from Δ^{2} and I.
Let \bar{P} be a vertex cut of P at the vertex $\tilde{\mathbf{v}}:=v_{n_{1} n_{2} \ldots n_{m}}$. Then the vertex set and the facet set of \bar{P} are respectively

$$
\begin{align*}
& V(\bar{P}):=(V(P) \backslash\{\tilde{\mathbf{v}}\}) \cup V(\bar{F}), \tag{5.1}\\
& \mathcal{F}(\bar{P}):=\left\{\bar{F}_{k_{j}}^{j}:=F_{k_{j}}^{j} \cap \bar{P} \mid F_{k_{j}}^{j} \in \mathcal{F}(P)\right\} \cup\{\bar{F}\} .
\end{align*}
$$

Let

$$
\begin{equation*}
\bar{\lambda}: \mathcal{F}(\bar{P}) \rightarrow \mathbb{Z}^{n} \tag{5.2}
\end{equation*}
$$

be a characteristic function defined as follows

$$
\begin{aligned}
\bar{\lambda}\left(\bar{F}_{j}^{1}\right) & :=e_{j} \quad \text { for } j=1, \ldots, n_{1}, \\
& \vdots \\
\bar{\lambda}\left(\bar{F}_{j}^{m}\right) & :=e_{N_{m-1}+j} \quad \text { for } j=1, \ldots, n_{m}, \\
\bar{\lambda}\left(\bar{F}_{0}^{j}\right) & :=\mathbf{a}_{j} \in \mathbb{Z}^{n} \quad \text { for } j=1, \ldots, m, \\
\bar{\lambda}(\bar{F}) & :=\mathbf{b} \in \mathbb{Z}^{n} .
\end{aligned}
$$

where e_{1}, \ldots, e_{n} are the standard basis vectors of \mathbb{Z}^{n}.

Let

$$
\begin{equation*}
\bar{\lambda}: \mathcal{F}(\bar{P}) \rightarrow \mathbb{Z}^{n} \tag{5.2}
\end{equation*}
$$

be a characteristic function defined as follows

$$
\begin{aligned}
\bar{\lambda}\left(\bar{F}_{j}^{1}\right) & :=e_{j} \quad \text { for } j=1, \ldots, n_{1}, \\
& \vdots \\
\bar{\lambda}\left(\bar{F}_{j}^{m}\right) & :=e_{N_{m-1}+j} \quad \text { for } j=1, \ldots, n_{m}, \\
\bar{\lambda}\left(\bar{F}_{0}^{j}\right) & :=\mathbf{a}_{j} \in \mathbb{Z}^{n} \quad \text { for } j=1, \ldots, m, \\
\bar{\lambda}(\bar{F}) & :=\mathbf{b} \in \mathbb{Z}^{n} .
\end{aligned}
$$

where e_{1}, \ldots, e_{n} are the standard basis vectors of \mathbb{Z}^{n}.
The characteristic pair $(\bar{P}, \bar{\lambda})$ induces a map $\lambda: \mathcal{F}(P) \rightarrow \mathbb{Z}^{n}$ defined by

$$
\begin{equation*}
\lambda\left(F_{k_{j}}^{j}\right):=\bar{\lambda}\left(\bar{F}_{k_{j}}^{j}\right) \tag{5.4}
\end{equation*}
$$

for $j=1, \ldots, m$ and $1 \leqslant k_{j} \leqslant n_{j}$.

Note that, $\tilde{\mathbf{v}}=F_{1}^{1} \cap \cdots \cap F_{n_{1}-1}^{1} \cap F_{0}^{1} \cap \ldots F_{1}^{m} \cap \cdots \cap F_{n_{m}-1}^{m} \cap F_{0}^{m}$.

Note that, $\tilde{\mathbf{v}}=F_{1}^{1} \cap \cdots \cap F_{n_{1}-1}^{1} \cap F_{0}^{1} \cap \ldots F_{1}^{m} \cap \cdots \cap F_{n_{m}-1}^{m} \cap F_{0}^{m}$. The following matrix

$$
A_{\tilde{\mathbf{v}}}:=A_{v_{n_{1} \ldots n_{m}}}=\left(\begin{array}{lllllllll}
e_{1} & \ldots & e_{N_{1}-1} & \mathbf{a}_{1} & e_{N_{1}+1} & \ldots & \mathbf{a}_{m-1} & e_{N_{(m-1)}+1} & \ldots \tag{5.5}
\end{array} e_{N_{m}-1} \mathbf{a}_{m}\right)
$$

is associated to the vertex $\tilde{\mathbf{v}} \in V(P)$.

Note that, $\tilde{\mathbf{v}}=F_{1}^{1} \cap \cdots \cap F_{n_{1}-1}^{1} \cap F_{0}^{1} \cap \ldots F_{1}^{m} \cap \cdots \cap F_{n_{m}-1}^{m} \cap F_{0}^{m}$. The following matrix

$$
A_{\tilde{v}}:=A_{v_{n_{1} \ldots n_{m}}}=\left(\begin{array}{lllllllll}
e_{1} & \ldots & e_{N_{1}-1} & \mathbf{a}_{1} & e_{N_{1}+1} & \ldots & \mathbf{a}_{m-1} & e_{N_{(m-1)}+1} & \ldots \tag{5.5}
\end{array} e_{N_{m}-1} \quad \mathbf{a}_{m}\right)
$$

is associated to the vertex $\tilde{\mathbf{v}} \in V(P)$.

Lemma 5.1 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of the polytope $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

Note that, $\tilde{\mathbf{v}}=F_{1}^{1} \cap \cdots \cap F_{n_{1}-1}^{1} \cap F_{0}^{1} \cap \ldots F_{1}^{m} \cap \cdots \cap F_{n_{m}-1}^{m} \cap F_{0}^{m}$.
The following matrix

$$
A_{\tilde{v}}:=A_{v_{n_{1} \ldots n_{m}}}=\left(\begin{array}{lllllllll}
e_{1} & \ldots & e_{N_{1}-1} & \mathbf{a}_{1} & e_{N_{1}+1} & \ldots & \mathbf{a}_{m-1} & e_{N_{(m-1)}+1} & \ldots \tag{5.5}
\end{array} e_{N_{m}-1} \quad \mathbf{a}_{m}\right)
$$

is associated to the vertex $\tilde{\mathbf{v}} \in V(P)$.

Lemma 5.1 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of the polytope $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$
\operatorname{det} A_{\mathbf{u}}= \begin{cases}-1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { odd } \tag{5.6}\\ +1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { even }\end{cases}
$$

for $\mathbf{u} \in V(\bar{P})$. Then the matrix $A_{\tilde{v}}$ can be characterized based on the determinant of the matrix.

Theorem 5.2 (Sarkar, Sau)
Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of the polytope $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

Theorem 5.2 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of the polytope $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$
\operatorname{det} A_{\mathbf{u}}= \begin{cases}-1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { odd } \tag{5.7}\\ +1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { even }\end{cases}
$$

Theorem 5.2 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of the polytope $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$
\operatorname{det} A_{\mathbf{u}}= \begin{cases}-1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { odd } \tag{5.7}\\ +1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { even }\end{cases}
$$

for any $\mathbf{u} \in V(\bar{P})$ and $\mathbf{u}_{0}:=u_{0, \ldots, 0}$.

Theorem 5.2 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of the polytope $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$
\operatorname{det} A_{\mathbf{u}}= \begin{cases}-1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { odd } \tag{5.7}\\ +1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { even }\end{cases}
$$

for any $\mathbf{u} \in V(\bar{P})$ and $\mathbf{u}_{0}:=u_{0, \ldots, 0}$. Then we can determine \mathbf{b} according to the values of $\operatorname{det} A_{\tilde{v}}$ as follows

Theorem 5.2 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of the polytope $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$
\operatorname{det} A_{\mathbf{u}}= \begin{cases}-1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { odd } \tag{5.7}\\ +1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { even }\end{cases}
$$

for any $\mathbf{u} \in V(\bar{P})$ and $\mathbf{u}_{0}:=u_{0, \ldots, 0}$. Then we can determine \mathbf{b} according to the values of $\operatorname{det} A_{\tilde{v}}$ as follows
Case 1: If $\operatorname{det} A_{\tilde{v}}=0$, then

$$
\sum_{j=1}^{m} b_{N_{j}}=-1
$$

and b_{i} can be arbitrary if $i \notin\left\{N_{1}, \ldots, N_{m}\right\}$.

Theorem 5.2 (Sarkar, Sau)

Let $X(\bar{P}, \bar{\lambda})$ be a (quasi)toric manifold where \bar{P} is the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of the polytope $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ and $\bar{\lambda}$ is defined as in (5.2) satisfying

$$
\operatorname{det} A_{\mathbf{u}}= \begin{cases}-1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { odd } \tag{5.7}\\ +1 & \text { if } D\left(\mathbf{u}, \mathbf{u}_{0}\right)=\text { even }\end{cases}
$$

for any $\mathbf{u} \in V(\bar{P})$ and $\mathbf{u}_{0}:=u_{0, \ldots, 0}$. Then we can determine \mathbf{b} according to the values of $\operatorname{det} A_{\tilde{v}}$ as follows
Case 1: If $\operatorname{det} A_{\tilde{v}}=0$, then

$$
\sum_{j=1}^{m} b_{N_{j}}=-1
$$

and b_{i} can be arbitrary if $i \notin\left\{N_{1}, \ldots, N_{m}\right\}$.
Case 2: If $\operatorname{det} A_{\tilde{v}} \neq 0$, then

$$
b_{i}=\frac{(-1)^{m}}{\operatorname{det} A_{\tilde{v}}} \sum_{q=1}^{n} A_{(i, q)}
$$

for $i=1, \ldots, n$ where $A_{(i, a)}$ is the (i, q)-th entry of the matrix $A_{\tilde{v}}$.
Dr. Subhankar Sau (ISI Kolkata)
Cohomology of (quasi)toric manifolds
March 23, 2022

A cohomology calculation following ${ }^{4}$ leads us to

$$
\begin{equation*}
H^{*}(X(\bar{P}, \bar{\lambda})) \cong \mathbb{Z}\left[y_{1}, \ldots, y_{m}, y\right] / \bar{I} \tag{5.8}
\end{equation*}
$$

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{v}}$ while the generators remains same for all the cases.

[^13] Duke Math. J. 62(1991).

A cohomology calculation following ${ }^{4}$ leads us to

$$
\begin{equation*}
H^{*}(X(\bar{P}, \bar{\lambda})) \cong \mathbb{Z}\left[y_{1}, \ldots, y_{m}, y\right] / \bar{I} \tag{5.8}
\end{equation*}
$$

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{v}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_{1}, \ldots, y_{m}, y belong to $H^{2}(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:

[^14]A cohomology calculation following ${ }^{4}$ leads us to

$$
\begin{equation*}
H^{*}(X(\bar{P}, \bar{\lambda})) \cong \mathbb{Z}\left[y_{1}, \ldots, y_{m}, y\right] / \bar{I} \tag{5.8}
\end{equation*}
$$

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{v}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_{1}, \ldots, y_{m}, y belong to $H^{2}(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:
(1) $y y_{1}=y y_{2}=\cdots=y y_{m}$,

[^15]A cohomology calculation following ${ }^{4}$ leads us to

$$
\begin{equation*}
H^{*}(X(\bar{P}, \bar{\lambda})) \cong \mathbb{Z}\left[y_{1}, \ldots, y_{m}, y\right] / \bar{I} \tag{5.8}
\end{equation*}
$$

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{v}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_{1}, \ldots, y_{m}, y belong to $H^{2}(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:
(1) $y y_{1}=y y_{2}=\cdots=y y_{m}$, and
(2) $y^{2}=(-1)^{m+1}\left(\operatorname{det} A_{\tilde{v}}\right) y y_{j}$ for any $j=1, \ldots, m$.

[^16]A cohomology calculation following ${ }^{4}$ leads us to

$$
\begin{equation*}
H^{*}(X(\bar{P}, \bar{\lambda})) \cong \mathbb{Z}\left[y_{1}, \ldots, y_{m}, y\right] / \bar{I} \tag{5.8}
\end{equation*}
$$

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{v}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_{1}, \ldots, y_{m}, y belong to $H^{2}(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:
(1) $y y_{1}=y y_{2}=\cdots=y y_{m}$, and
(2) $y^{2}=(-1)^{m+1}\left(\operatorname{det} A_{\tilde{v}}\right) y y_{j}$ for any $j=1, \ldots, m$.

Theorem 5.4 (Sarkar, Sau)

Let $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ be a product of simplices as in (3.1) and \bar{P} is a vertex cut of P along a vertex $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ such that $\operatorname{det} A_{\tilde{v}}=0$.

[^17] Duke Math. J. 62(1991).

A cohomology calculation following ${ }^{4}$ leads us to

$$
\begin{equation*}
H^{*}(X(\bar{P}, \bar{\lambda})) \cong \mathbb{Z}\left[y_{1}, \ldots, y_{m}, y\right] / \bar{I} \tag{5.8}
\end{equation*}
$$

where the homogeneous ideal \bar{I} changes depending on the determinant of $A_{\tilde{v}}$ while the generators remains same for all the cases.

Theorem 5.3 (Sarkar, Sau)

The elements y_{1}, \ldots, y_{m}, y belong to $H^{2}(X(\bar{P}, \bar{\lambda}))$ and satisfy the following:
(1) $y y_{1}=y y_{2}=\cdots=y y_{m}$, and
(2) $y^{2}=(-1)^{m+1}\left(\operatorname{det} A_{\tilde{v}}\right) y y_{j}$ for any $j=1, \ldots, m$.

Theorem 5.4 (Sarkar, Sau)

Let $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ be a product of simplices as in (3.1) and \bar{P} is a vertex cut of P along a vertex $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ such that $\operatorname{det} A_{\tilde{v}}=0$. Then the cohomology rings $H^{*}(X(\bar{P}, \bar{\lambda}))$ are isomorphic to each other if $b_{i}=0$ for $i \neq N_{j}$ and $j=1, \ldots, m$ in the vector \mathbf{b} assigned to the new facet \bar{F}.

[^18]For an element $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$, the annihilator of z is defined by

$$
\operatorname{Ann}(z)=\left\{w \in H^{2}(X(\bar{P}, \bar{\lambda})) \mid z w=0 \text { in } H^{4}(X(\bar{P}, \bar{\lambda}))\right\} .
$$

For an element $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$, the annihilator of z is defined by

$$
\operatorname{Ann}(z)=\left\{w \in H^{2}(X(\bar{P}, \bar{\lambda})) \mid z w=0 \text { in } H^{4}(X(\bar{P}, \bar{\lambda}))\right\} .
$$

Since $\left\{\bar{F}, \bar{F}_{n_{j}}^{j}\right\}$ for $j=1, \ldots, m$ are non-faces of \bar{P}, then $\operatorname{Ann}(c y)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

For an element $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$, the annihilator of z is defined by

$$
\operatorname{Ann}(z)=\left\{w \in H^{2}(X(\bar{P}, \bar{\lambda})) \mid z w=0 \text { in } H^{4}(X(\bar{P}, \bar{\lambda}))\right\} .
$$

Since $\left\{\bar{F}, \bar{F}_{n_{j}}^{j}\right\}$ for $j=1, \ldots, m$ are non-faces of \bar{P}, then $\operatorname{Ann}(c y)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

Theorem 5.5 (Sarkar, Sau)

Let $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ be a finite product of simplices as in (3.1) with $m \geqslant 2$ and $n \geqslant 3$ and $X(\bar{P}, \bar{\lambda})$ is a (quasi)toric manifold over the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of P.

For an element $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$, the annihilator of z is defined by

$$
\operatorname{Ann}(z)=\left\{w \in H^{2}(X(\bar{P}, \bar{\lambda})) \mid z w=0 \text { in } H^{4}(X(\bar{P}, \bar{\lambda}))\right\} .
$$

Since $\left\{\bar{F}, \bar{F}_{n_{j}}^{j}\right\}$ for $j=1, \ldots, m$ are non-faces of \bar{P}, then $\operatorname{Ann}(c y)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

Theorem 5.5 (Sarkar, Sau)

Let $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ be a finite product of simplices as in (3.1) with $m \geqslant 2$ and $n \geqslant 3$ and $X(\bar{P}, \bar{\lambda})$ is a (quasi)toric manifold over the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of P. If $\operatorname{Ann}(z)$ is of rank m for a $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$ and $\operatorname{det} A_{\tilde{v}}=(-1)^{m}$, then z is a constant multiple of y.

For an element $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$, the annihilator of z is defined by

$$
\operatorname{Ann}(z)=\left\{w \in H^{2}(X(\bar{P}, \bar{\lambda})) \mid z w=0 \text { in } H^{4}(X(\bar{P}, \bar{\lambda}))\right\} .
$$

Since $\left\{\bar{F}, \bar{F}_{n_{j}}^{j}\right\}$ for $j=1, \ldots, m$ are non-faces of \bar{P}, then $\operatorname{Ann}(c y)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

Theorem 5.5 (Sarkar, Sau)

Let $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ be a finite product of simplices as in (3.1) with $m \geqslant 2$ and $n \geqslant 3$ and $X(\bar{P}, \bar{\lambda})$ is a (quasi)toric manifold over the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of P. If $\operatorname{Ann}(z)$ is of rank m for a $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$ and $\operatorname{det} A_{\tilde{v}}=(-1)^{m}$, then z is a constant multiple of y.

Theorem 5.6 (Sarkar, Sau)

Let $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ be a product of simplices as in (3.1) with $m \geqslant 2, n \geqslant 3$ and \bar{P} is a vertex cut of P along a vertex $\tilde{\mathbf{v}}$ such that $\operatorname{det} A_{\tilde{v}}=(-1)^{m}$.

For an element $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$, the annihilator of z is defined by

$$
\operatorname{Ann}(z)=\left\{w \in H^{2}(X(\bar{P}, \bar{\lambda})) \mid z w=0 \text { in } H^{4}(X(\bar{P}, \bar{\lambda}))\right\} .
$$

Since $\left\{\bar{F}, \bar{F}_{n_{j}}^{j}\right\}$ for $j=1, \ldots, m$ are non-faces of \bar{P}, then $\operatorname{Ann}(c y)$ is of rank m for a nonzero constant c. The following lemma discusses about the converse.

Theorem 5.5 (Sarkar, Sau)

Let $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ be a finite product of simplices as in (3.1) with $m \geqslant 2$ and $n \geqslant 3$ and $X(\bar{P}, \bar{\lambda})$ is a (quasi)toric manifold over the vertex cut at $\tilde{\mathbf{v}}=v_{n_{1} \ldots n_{m}}$ of P. If $\operatorname{Ann}(z)$ is of rank m for a $z \in H^{2}(X(\bar{P}, \bar{\lambda}))$ and $\operatorname{det} A_{\tilde{v}}=(-1)^{m}$, then z is a constant multiple of y.

Theorem 5.6 (Sarkar, Sau)

Let $P=\prod_{j=1}^{m} \Delta^{n_{j}}$ be a product of simplices as in (3.1) with $m \geqslant 2, n \geqslant 3$ and \bar{P} is a vertex cut of P along a vertex $\tilde{\mathbf{v}}$ such that $\operatorname{det} A_{\tilde{v}}=(-1)^{m}$. Then $H^{*}(X(\bar{P}, \bar{\lambda}))$ and $H^{*}\left(X\left(\bar{P}, \bar{\lambda}^{\prime}\right)\right)$ are isomorphic as graded rings if and only if $H^{*}(X(P, \lambda))$ and $H^{*}\left(X\left(P, \lambda^{\prime}\right)\right)$ are isomorphic as graded rings.

References

- M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991), no. 2, 417-451. MR 1104531
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry. MR 1234037
- Suyong Choi, Mikiya Masuda, and Dong Youp Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), no. 1, 109-129. MR 2666127
- Sho Hasui, Hideya Kuwata, Mikiya Masuda, and Seonjeong Park, Classification of toric manifolds over an n-cube with one vertex cut, Int. Math. Res. Not. IMRN (2020), no. 16, 4890-4941. MR 4139029
- M. Masuda and T. E. Panov, Semi-free circle actions, Bott towers, and quasitoric manifolds, Mat. Sb. 199 (2008), no. 8, 95-122. MR 2452268
- Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, vol. 24, American Mathematical Society, Providence, RI, 2002. MR 1897064

Thank You

[^0]: ${ }^{1}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions,

[^1]: ${ }^{1}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991)

[^2]: ${ }^{1}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991)

[^3]: ${ }^{1}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991)

[^4]: ${ }^{1}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991)

[^5]: ${ }^{1}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991)

[^6]: ${ }^{2}$ Suyong Choi, Mikiya Masuda, and Dong Youp Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), no. 1, 109-129. MR 2666127

[^7]: ${ }^{3}$ William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

[^8]: ${ }^{3}$ William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

[^9]: ${ }^{3}$ William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

[^10]: ${ }^{3}$ William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

[^11]: ${ }^{3}$ William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

[^12]: ${ }^{3}$ William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry

[^13]: ${ }^{4}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions,

[^14]: ${ }^{4}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991).

[^15]: ${ }^{4}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991).

[^16]: ${ }^{4}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991).

[^17]: ${ }^{4}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions,

[^18]: ${ }^{4}$ M. W. Davis, and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991).

