On string quasitoric manifolds and their orbit polytopes

Qifan Shen @ Fudan University

Toric Topology 2022 March 23-25, Osaka City University

March 24, 2022

OUTLINE

- 1 Background
 - Combinatorial pair (P, Λ)
 - Quasitoric manifold $M(P, \Lambda)$
 - String property
- 2 Main results
 - Target and straightforward approach
 - Low dimensional case
 - Few facets case
 - Real analogue
- 3 Further discussion

Definition (simple polytope and flag polytope)

A polytope is called *simple* if each codimension-*k* face is the intersection of exactly *k* facets.

A simple polytope is called *flag* if each family of pairwise intersecting facets has non-empty common intersection.

Definition (simple polytope and flag polytope)

A polytope is called *simple* if each codimension-*k* face is the intersection of exactly *k* facets.

A simple polytope is called *flag* if each family of pairwise intersecting facets has non-empty common intersection.

Definition (*f*-vector and *h*-vector)

Given an n-dimensional polytope P, let f_i denote the number of its i-dimensional faces and determine h_i by

$$\sum_{i=0}^{n} h_i s^{n-i} = \sum_{i=0}^{n} f_i (s-1)^i.$$

 $f(P) = (f_0, f_1, \dots, f_{n-1}, 1)$ and $h(P) = (h_0, h_1, \dots, h_{n-1}, h_n)$ are called *f-vector* and *h-vector* of *P* respectively.

Definition (*f*-vector and *h*-vector)

Given an n-dimensional polytope P, let f_i denote the number of its i-dimensional faces and determine h_i by

$$\sum_{i=0}^{n} h_i s^{n-i} = \sum_{i=0}^{n} f_i (s-1)^i.$$

 $f(P) = (f_0, f_1, \dots, f_{n-1}, 1)$ and $h(P) = (h_0, h_1, \dots, h_{n-1}, h_n)$ are called *f-vector* and *h-vector* of *P* respectively.

• (Dehn-Sommerville relation) If P^n is simple, then $h_i = h_{n-i}$ for $0 \le i \le n$.

Definition (characteristic matrix)

For an n-dimensional simple polytope P with facets $\{F_i\}_{i=1}^m$, $\Lambda = (\lambda_1, \dots, \lambda_m) \in Mat_{n \times m}(\mathbb{Z})$ is a corresponding *characteristic* matrix if the following nonsingular condition holds:

$$\forall p = \bigcap_{i=1}^k F_{j_i} \Rightarrow \det(\Lambda_p) = \det(\lambda_{j_1}, \cdots, \lambda_{j_n}) = \pm 1.$$

Definition (characteristic matrix)

For an n-dimensional simple polytope P with facets $\{F_i\}_{i=1}^m$, $\Lambda = (\lambda_1, \dots, \lambda_m) \in Mat_{n \times m}(\mathbb{Z})$ is a corresponding *characteristic* matrix if the following nonsingular condition holds:

$$\forall p = \bigcap_{i=1}^k F_{j_i} \Rightarrow \det(\Lambda_p) = \det(\lambda_{j_1}, \cdots, \lambda_{j_n}) = \pm 1.$$

Example

$$P = C_2(3)$$
 i.e., triangle $\Rightarrow \Lambda = \begin{pmatrix} 1 & 0 & \delta_1 \\ 0 & 1 & \delta_2 \end{pmatrix}$ with $\delta_1, \delta_2 = \pm 1$.

Quasitoric manifold $M(P, \Lambda)$

Canonical Construction: $(P, \Lambda) \rightsquigarrow M(P, \Lambda)$

For each $p \in P$, there exists a unique face $f(p) = \bigcap_{i=1}^k F_{j_i}$ s.t. p is in the relative interior of f(p).

Canonical Construction: $(P, \Lambda) \rightsquigarrow M(P, \Lambda)$

For each $p \in P$, there exists a unique face $f(p) = \bigcap_{i=1}^k F_{j_i}$ s.t. p is in the relative interior of f(p).

Regard $(\lambda_{j_1}, \dots, \lambda_{j_k}) = (\lambda_{i,j}) \in Mat_{n \times k}(\mathbb{Z})$ as a map from T^k to T^n , sending (t_1, \dots, t_k) to $(\prod_{i=1}^k t_i^{\lambda_{1,i}}, \dots, \prod_{i=1}^k t_i^{\lambda_{n,i}})$. Let G(p) denote the image.

Canonical Construction: $(P, \Lambda) \rightsquigarrow M(P, \Lambda)$

For each $p \in P$, there exists a unique face $f(p) = \bigcap_{i=1}^k F_{j_i}$ s.t. p is in the relative interior of f(p).

Regard $(\lambda_{j_1}, \dots, \lambda_{j_k}) = (\lambda_{i,j}) \in Mat_{n \times k}(\mathbb{Z})$ as a map from T^k to T^n , sending (t_1, \dots, t_k) to $(\prod_{i=1}^k t_i^{\lambda_{1,i}}, \dots, \prod_{i=1}^k t_i^{\lambda_{n,i}})$. Let G(p) denote the image.

$$M(P,\Lambda) = (P \times T^n) / \sim with (p, t_1) \sim (p, t_2) \Leftrightarrow t_1^{-1}t_2 \in G(p).$$

Canonical Construction: $(P, \Lambda) \rightsquigarrow M(P, \Lambda)$

For each $p \in P$, there exists a unique face $f(p) = \bigcap_{i=1}^k F_{j_i}$ s.t. p is in the relative interior of f(p).

Regard $(\lambda_{j_1}, \dots, \lambda_{j_k}) = (\lambda_{i,j}) \in Mat_{n \times k}(\mathbb{Z})$ as a map from T^k to T^n , sending (t_1, \dots, t_k) to $(\prod_{i=1}^k t_i^{\lambda_{1,i}}, \dots, \prod_{i=1}^k t_i^{\lambda_{n,i}})$. Let G(p) denote the image.

$$M(P,\Lambda) = (P \times T^n) / \sim with (p, t_1) \sim (p, t_2) \Leftrightarrow t_1^{-1}t_2 \in G(p).$$

Example

$$P = \Delta^n \Rightarrow M(P, \Lambda) = \mathbb{C}P^n$$
.

Remark

1. Characteristic matrix corresponding to P may NOT exist \rightsquigarrow Buchstaber invariant s(P).

Remark

1. Characteristic matrix corresponding to P may NOT exist \rightsquigarrow Buchstaber invariant s(P).

Example: n-dimensional dual cyclic polytope with more than $2^n - 1$ facets when n > 4.

Remark

1. Characteristic matrix corresponding to P may NOT exist \rightsquigarrow Buchstaber invariant s(P).

Example: n-dimensional dual cyclic polytope with more than $2^n - 1$ facets when n > 4.

2. Canonical Construction method can be applied to the case of moment-angle manifold.

Quasitoric manifold $M(P, \Lambda)$

• T^n -action on $M(P, \Lambda)$: free when p lies in the interior of P; trivial when p is the vertex of P.

- T^n -action on $M(P, \Lambda)$: free when p lies in the interior of P; trivial when p is the vertex of P.
- Quotient of moment-angle manifold \Rightarrow smooth, orientable and unitary structure on $M(P, \Lambda)$.

- T^n -action on $M(P, \Lambda)$: free when p lies in the interior of P; trivial when p is the vertex of P.
- Quotient of moment-angle manifold \Rightarrow smooth, orientable and unitary structure on $M(P, \Lambda)$.
- Cell decomposition induced from star neighborhood of vertices \Rightarrow explicit expression of $\beta^i(-), H_T^*(-), H^*(-)$ and $c_i(-), p_i(-)$.

The integral cohomology groups of $M(P, \Lambda)$ vanish in odd dimensions and therefore are free abelian in even dimensions. The Betti numbers are given by

$$\beta^{2i}(M(P,\Lambda)) = h_i(P) \qquad 0 \le i \le n$$

where $\{h_i(P)\}_{i=0}^n$ are components of h-vector of P.

The integral cohomology groups of $M(P, \Lambda)$ vanish in odd dimensions and therefore are free abelian in even dimensions. The Betti numbers are given by

$$\beta^{2i}(M(P,\Lambda)) = h_i(P) \qquad 0 \le i \le n$$

where $\{h_i(P)\}_{i=0}^n$ are components of h-vector of P.

Dehn-Sommerville relation ↔ Poincaré Duality.

Write $\Lambda = (\lambda_{i,j}) \in Mat_{n \times m}(\mathbb{Z})$, then the integral cohomology ring of $M(P, \Lambda)$ is given by

$$H^*(M(P,\Lambda)) \cong \mathbb{Z}[v_1,\ldots,v_m]/(\mathcal{I}+\mathcal{J})$$

where face ring ideal \mathcal{I} is generated by $\prod_{i=1}^k v_{j_i}$ for $\bigcap_{i=1}^k F_{j_i} = \emptyset$ and linear ideal \mathcal{J} is generated by $\sum_{i=1}^m \lambda_{l,i} v_i$ for $1 \leq l \leq n$.

Write $\Lambda = (\lambda_{i,j}) \in Mat_{n \times m}(\mathbb{Z})$, then the integral cohomology ring of $M(P, \Lambda)$ is given by

$$H^*(M(P,\Lambda)) \cong \mathbb{Z}[v_1,\ldots,v_m]/(\mathcal{I}+\mathcal{J})$$

where face ring ideal \mathcal{I} is generated by $\prod_{i=1}^k v_{j_i}$ for $\bigcap_{i=1}^k F_{j_i} = \emptyset$ and linear ideal \mathcal{J} is generated by $\sum_{i=1}^m \lambda_{l,i} v_i$ for $1 \leq l \leq n$.

• For each facet F_j , $M_j = \pi^{-1}(F_j)$ is called a characteristic submanifold, where $\pi: M(P,\Lambda) \to P$ is the natural projection. Generator v_j is the Poincaré dual of M_j .

Chern classes and Pontryagin classes are given by:

$$c(M(P,\Lambda)) = \prod_{j=1}^{m} (1+v_j)$$
 $p(M(P,\Lambda)) = \prod_{j=1}^{m} (1+v_j^2).$

In particular,
$$w_2(M(P,\Lambda)) \equiv c_1(M(P,\Lambda)) \equiv \sum_{j=1}^m v_j \pmod{2}$$
 and $p_1(M(P,\Lambda)) = \sum_{j=1}^m v_j^2$.

Chern classes and Pontryagin classes are given by:

$$c(M(P,\Lambda)) = \prod_{j=1}^{m} (1+v_j)$$
 $p(M(P,\Lambda)) = \prod_{j=1}^{m} (1+v_j^2).$

In particular, $w_2(M(P,\Lambda)) \equiv c_1(M(P,\Lambda)) \equiv \sum_{j=1}^m v_j \pmod{2}$ and $p_1(M(P,\Lambda)) = \sum_{j=1}^m v_j^2$.

Example

$$H^*(M(C_2(3),\Lambda)) \cong \mathbb{Z}[v]/\langle v^3 \rangle.$$

 $w_2(M(C_2(3),\Lambda)) = (\delta_1 + \delta_2 + 1)v = v; p_1(M(C_2(3),\Lambda)) = 3v^2.$

Definition (weakly equivariant homeomorphism)

Two T^n -manifolds M, N are weakly equivariantly homeomorphic (w.e.h.) if $\exists \phi \in \operatorname{Aut} T^n$ and $h \in \operatorname{Homeo}(M, N)$ s.t. $\forall t \in T^n$ and $m \in M$, $h(t \cdot m) = \phi(t) \cdot h(m)$.

Definition (weakly equivariant homeomorphism)

Two T^n -manifolds M, N are weakly equivariantly homeomorphic (w.e.h.) if $\exists \phi \in \operatorname{Aut} T^n$ and $h \in \operatorname{Homeo}(M, N)$ s.t. $\forall t \in T^n$ and $m \in M$, $h(t \cdot m) = \phi(t) \cdot h(m)$.

Three types of group actions on (P, Λ) inducing equivalence:

- (1) column permutation by $Aut(\partial P^*)$;
- (2) sign permutation of columns by \mathbb{Z}_2^m ;
- (3) left multiplication by $GL_n(\mathbb{Z})$.

Definition (weakly equivariant homeomorphism)

Two T^n -manifolds M, N are weakly equivariantly homeomorphic (w.e.h.) if $\exists \phi \in \operatorname{Aut} T^n$ and $h \in \operatorname{Homeo}(M, N)$ s.t. $\forall t \in T^n$ and $m \in M$, $h(t \cdot m) = \phi(t) \cdot h(m)$.

Three types of group actions on (P, Λ) inducing equivalence:

- (1) column permutation by $Aut(\partial P^*)$;
- (2) sign permutation of columns by \mathbb{Z}_2^m ;
- (3) left multiplication by $GL_n(\mathbb{Z})$.

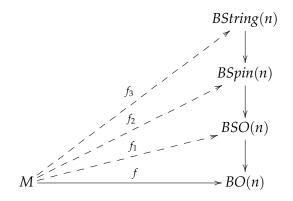
Fact

There is a one-to-one correspondence between w.e.h. classes of quasitoric manifolds and equivalent classes of characteristic pairs.

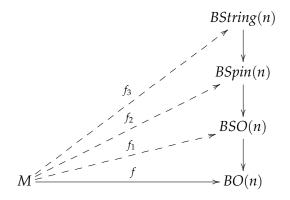
String property

Let *V* be a real vector bundle of rank *n* over a manifold *M*. Additional structures lead to liftings in Whitehead tower:

Let *V* be a real vector bundle of rank *n* over a manifold *M*. Additional structures lead to liftings in Whitehead tower:



Let *V* be a real vector bundle of rank *n* over a manifold *M*. Additional structures lead to liftings in Whitehead tower:



$$M$$
 is string $\Leftrightarrow w_1(M) = w_2(M) = p_1(M)/2 = 0$.

Target and straightforward approach

M(-,-): combinatorial data \sim topological objects

Target and straightforward approach

M(-,-): combinatorial data \sim topological objects

 Natural target: topological properties expressed in a combinatorial way.

M(-,-): combinatorial data \sim topological objects

- Natural target: topological properties expressed in a combinatorial way.
- Straightforward approach: express p_1 as a \mathbb{Q} -linear combination of certain $H^4(M(P,\Lambda))$ basis.

M(-,-): combinatorial data \sim topological objects

- Natural target: topological properties expressed in a combinatorial way.
- Straightforward approach: express p_1 as a \mathbb{Q} -linear combination of certain $H^4(M(P,\Lambda))$ basis.
- w_2 and p_1 remain invariant under equivalence \sim refined characteristic pair (P, Λ) : $\bigcap_{i=1}^n F_i \neq \emptyset$ and $\Lambda = [I_n \mid \Lambda_*]$.

Target and straightforward approach

Easy task:
$$w_2 = 0 \Leftrightarrow \sum_{i=1}^n \lambda_{i,j} = 1 \pmod{2}$$
 for $1 \leq j \leq m$.

Target and straightforward approach

Easy task:
$$w_2 = 0 \Leftrightarrow \sum_{i=1}^n \lambda_{i,j} = 1 \pmod{2}$$
 for $1 \leq j \leq m$.

Hard problem: $p_1 = 0$ is a non-linear restriction.

Target and straightforward approach

Easy task:
$$w_2 = 0 \Leftrightarrow \sum_{i=1}^n \lambda_{i,j} = 1 \pmod{2}$$
 for $1 \leq j \leq m$.

Hard problem: $p_1 = 0$ is a non-linear restriction.

• $\{v_i\}_{i=n+1}^m$ form a \mathbb{Z} -basis of $H^2(M(P,\Lambda))$;

Target and straightforward approach

Easy task:
$$w_2 = 0 \Leftrightarrow \sum_{i=1}^n \lambda_{i,j} = 1 \pmod{2}$$
 for $1 \leq j \leq m$.

Hard problem: $p_1 = 0$ is a non-linear restriction.

- $\{v_i\}_{i=n+1}^m$ form a \mathbb{Z} -basis of $H^2(M(P,\Lambda))$;
- $\{v_iv_j\}_{n+1\leq i,j\leq m}$ are \mathbb{Q} -generators of $H^4(M(P,\Lambda))$;

Easy task: $w_2 = 0 \Leftrightarrow \sum_{i=1}^n \lambda_{i,j} = 1 \pmod{2}$ for $1 \leq j \leq m$.

Hard problem: $p_1 = 0$ is a non-linear restriction.

- $\{v_i\}_{i=n+1}^m$ form a \mathbb{Z} -basis of $H^2(M(P,\Lambda))$;
- $\{v_iv_j\}_{n+1\leq i,j\leq m}$ are \mathbb{Q} -generators of $H^4(M(P,\Lambda))$;
- Independency of relations in $H^4(M(P, \Lambda))$:

$$\binom{m-n+1}{2}-[\binom{m}{2}-f_{n-2}(P)]=\beta^4(M(P,\Lambda)).$$

(Orlik-Raymond 1970) 4-dimensional quasitoric manifolds are homeomorphic to the equivariant connected sum of $\mathbb{C}P^2$, $\overline{\mathbb{C}P^2}$ and $\mathbb{C}P^1 \times \mathbb{C}P^1$.

(Orlik-Raymond 1970) 4-dimensional quasitoric manifolds are homeomorphic to the equivariant connected sum of $\mathbb{C}P^2$, $\overline{\mathbb{C}P^2}$ and $\mathbb{C}P^1 \times \mathbb{C}P^1$.

• $C_2(m)$ can be realized as the orbit polytope of a string quasitoric manifold $\Leftrightarrow m \equiv 0 \pmod{2}$.

(Orlik-Raymond 1970) 4-dimensional quasitoric manifolds are homeomorphic to the equivariant connected sum of $\mathbb{C}P^2$, $\overline{\mathbb{C}P^2}$ and $\mathbb{C}P^1 \times \mathbb{C}P^1$.

- $C_2(m)$ can be realized as the orbit polytope of a string quasitoric manifold $\Leftrightarrow m \equiv 0 \pmod{2}$.
- There exists exactly one homeomorphism class of string quasitoric manifold over $C_2(2m_0)$ for each $m_0 \ge 2$. While up to w.e.h., there are countably many equivalent classes.

Theorem A (S. 2022)

A 3-dimensional simple polytope can be realized as the orbit polytope of a string quasitoric manifold iff it is 3-colorable.

Theorem A (S. 2022)

A 3-dimensional simple polytope can be realized as the orbit polytope of a string quasitoric manifold iff it is 3-colorable.

• (Davis-Januszkiewicz 1991) "If" part is guaranteed by *pullback of the linear model*.

Theorem A (S. 2022)

A 3-dimensional simple polytope can be realized as the orbit polytope of a string quasitoric manifold iff it is 3-colorable.

- (Davis-Januszkiewicz 1991) "If" part is guaranteed by pullback of the linear model.
- (Joswig 2001) An *n*-dimensional simple polytope is *n*-colorable iff all of its 2-faces are polygons with even number of edges.

Theorem A (S. 2022)

A 3-dimensional simple polytope can be realized as the orbit polytope of a string quasitoric manifold iff it is 3-colorable.

- (Davis-Januszkiewicz 1991) "If" part is guaranteed by *pullback of the linear model*.
- (Joswig 2001) An *n*-dimensional simple polytope is *n*-colorable iff all of its 2-faces are polygons with even number of edges.
- Parallel results are NOT valid in dimension > 3.

Example

 $M(C_2(4) \times C_2(5), \Lambda)$ is string if Λ is equivalent to

Example

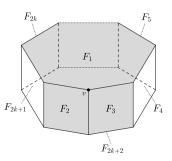
 $M(C_2(4) \times C_2(5), \Lambda)$ is string if Λ is equivalent to

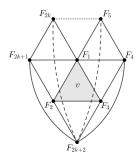
Proposition (S. 2022)

 $C_2(m_1) \times C_2(m_2)$ can be realized as the orbit polytope of a string quasitoric manifold $\Leftrightarrow m_1, m_2 \ge 4$ and $m_1m_2 \equiv 0 \pmod{2}$.

Let $L_{2k} = C_2(2k) \times I$ denote the prism with 2k side facets.

Let $L_{2k} = C_2(2k) \times I$ denote the prism with 2k side facets.





$$M(L_6, \Lambda) \text{ with } \Lambda = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 \end{pmatrix}.$$

$$M(L_6, \Lambda) \text{ with } \Lambda = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 \end{pmatrix}.$$

$$M(L_6, \Lambda) \text{ with } \Lambda = \begin{pmatrix} \frac{1}{0} & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 \end{pmatrix}.$$

$$M(L_6, \Lambda) \text{ with } \Lambda = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 \end{pmatrix}.$$

$$M(L_6, \Lambda) \text{ with } \Lambda = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 \end{pmatrix}.$$

Example (string but NOT bundle type)

$$M(L_6, \Lambda) \text{ with } \Lambda = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 \end{pmatrix}.$$

Theorem B (S. 2022)

If $M(L_{2k}, \Lambda)$ is string, then there exist $\{M(L_{2k_i}, \Lambda_i)\}_{i=1}^s$ s.t.

- (1) $M(L_{2k_i}, \Lambda_i)$ is of bundle type and string for $1 \le i \le s$;
- (2) $M(L_{2k}, \Lambda) = M(L_{2k_1}, \Lambda_1) \#^e \cdots \#^e M(L_{2k_s}, \Lambda_s)$ up to w.e.h..

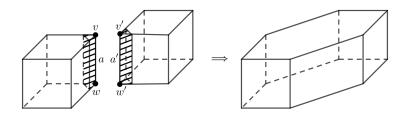


Figure: $L_6 = L_4 \#^e L_4$

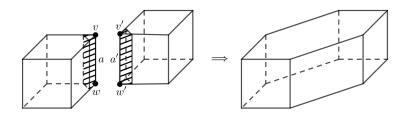


Figure: $L_6 = L_4 \#^e L_4$

Edge connected sum $\#^e$ together with compatible coloring \leadsto equivariant edge connected sum $\widetilde{\#^e}$.

Example (decomposition via $\widetilde{\#^e}$)

Example (decomposition via $\widetilde{\#^e}$)

$$\Lambda = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 \end{pmatrix}$$

Example (decomposition via $\widetilde{\#}^e$)

$$\Lambda = \left(\begin{array}{c|ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 \end{array}\right)$$

Example (decomposition via $\widetilde{\#}^e$)

 $M(L_6, \Lambda) = M(L_4, \Lambda_1) \#^e M(L_4, \Lambda_2)$ with Λ_1, Λ_2 equivalent to

Key Observation

Given an n-dimensional simple polytope P, if there exist facets F and $\{F_{j_i}\}_{i=1}^n$ s.t. $\bigcap_{i=1}^n F_{j_i} \neq \emptyset$ and $F \cap F_{j_i} \neq \emptyset$ for $1 \leq i \leq n$, then P can NOT be realized as the orbit polytope of a string quasitoric manifold.

Key Observation

Given an n-dimensional simple polytope P, if there exist facets F and $\{F_{j_i}\}_{i=1}^n$ s.t. $\bigcap_{i=1}^n F_{j_i} \neq \emptyset$ and $F \cap F_{j_i} \neq \emptyset$ for $1 \leq i \leq n$, then P can NOT be realized as the orbit polytope of a string quasitoric manifold.

Example

- 1. $P = \prod_{i=1}^{k} P_i$ with some P_i^* 2-neighborly;
- 2. *P* with a triangular 2-face.

Proposition (Blind-Blind 1992)

If an n-dimensional simple polytope P is triangle-free, then the number of facets $f_{n-1}(P) \geq 2n$. Moreover,

(1)
$$f_{n-1}(P) = 2n \Rightarrow P = I^n$$
;

(2)
$$f_{n-1}(P) = 2n + 1 \Rightarrow P = C_2(5) \times I^{n-2};$$

(3)
$$f_{n-1}(P) = 2n + 2 \Rightarrow P = C_2(6) \times I^{n-2}$$
 or $Q \times I^{n-3}$ or

$$C_2(5) \times C_2(5) \times I^{n-4}$$
 where Q is an edge cut of $C_2(5) \times I$.

Proposition (Blind-Blind 1992)

If an n-dimensional simple polytope P is triangle-free, then the number of facets $f_{n-1}(P) \geq 2n$. Moreover,

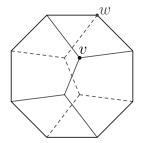
(1)
$$f_{n-1}(P) = 2n \Rightarrow P = I^n$$
;

(2)
$$f_{n-1}(P) = 2n + 1 \Rightarrow P = C_2(5) \times I^{n-2};$$

(3)
$$f_{n-1}(P) = 2n + 2 \Rightarrow P = C_2(6) \times I^{n-2}$$
 or $Q \times I^{n-3}$ or

$$C_2(5) \times C_2(5) \times I^{n-4}$$
 where Q is an edge cut of $C_2(5) \times I$.

• label facets and choose basis appropriately \sim explicit formula for $p_1 = \sum c_{i,j} v_i v_j$.



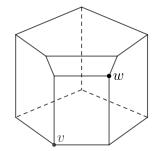


Figure: Q as an edge cut of $C_2(5) \times I$

Label the facets of I^n s.t. $F_i \cap F_{n+i} = \emptyset$ for $1 \le i \le n$. Choose the basis of $H^4(M(I^n, \Lambda))$ as $\{v_i v_j\}_{n+1 \le i < j \le 2n}$.

Label the facets of I^n s.t. $F_i \cap F_{n+i} = \emptyset$ for $1 \le i \le n$. Choose the basis of $H^4(M(I^n, \Lambda))$ as $\{v_i v_j\}_{n+1 \le i < j \le 2n}$.

Notation

Given
$$\Lambda = (\lambda_{s,t})_{n \times m}$$
, write $\rho_j = \sum_{i=1}^n \lambda_{i,j}^2 + 1$ for $1 \le j \le m$ and $\rho_{j_1,j_2} = \rho_{j_2,j_1} = 2 \sum_{i=1}^n \lambda_{i,j_1} \lambda_{i,j_2}$ for $1 \le j_1 < j_2 \le m$.

Label the facets of I^n s.t. $F_i \cap F_{n+i} = \emptyset$ for $1 \le i \le n$. Choose the basis of $H^4(M(I^n, \Lambda))$ as $\{v_i v_j\}_{n+1 \le i < j \le 2n}$.

Notation

Given
$$\Lambda = (\lambda_{s,t})_{n \times m}$$
, write $\rho_j = \sum_{i=1}^n \lambda_{i,j}^2 + 1$ for $1 \le j \le m$ and $\rho_{j_1,j_2} = \rho_{j_2,j_1} = 2 \sum_{i=1}^n \lambda_{i,j_1} \lambda_{i,j_2}$ for $1 \le j_1 < j_2 \le m$.

Proposition (S. 2022)

$$M(I^n, \Lambda)$$
 is string $\Leftrightarrow \sum_{k=1}^n \lambda_{k,i} \equiv 1 \pmod{2}$ for $n+1 \le i \le 2n$ and $\lambda_{i-n,i}\lambda_{i-n,j}\rho_i + \lambda_{j-n,j}\lambda_{j-n,i}\rho_j = \rho_{i,j}$ for $n+1 \le i < j \le 2n$.

Definition (Bott manifold)

Given a $\mathbb{C}P^1$ -bundle tower:

$$B^{2n} \xrightarrow{\mathbb{C}P^1} B^{2n-2} \xrightarrow{\mathbb{C}P^1} \cdots \xrightarrow{\mathbb{C}P^1} B^2 \xrightarrow{\mathbb{C}P^1} pt$$

the total space B^{2n} is called a *Bott manifold*.

Definition (Bott manifold)

Given a $\mathbb{C}P^1$ -bundle tower:

$$B^{2n} \xrightarrow{\mathbb{C}P^1} B^{2n-2} \xrightarrow{\mathbb{C}P^1} \cdots \xrightarrow{\mathbb{C}P^1} B^2 \xrightarrow{\mathbb{C}P^1} pt$$

the total space B^{2n} is called a *Bott manifold*.

• (Dobrinskaya 2001) $M(I^n, \Lambda)$ is w.e.h. to a Bott manifold iff Λ_* is equivalent to a unipotent upper triangular matrix.

Definition (Bott manifold)

Given a $\mathbb{C}P^1$ -bundle tower:

$$B^{2n} \xrightarrow{\mathbb{C}P^1} B^{2n-2} \xrightarrow{\mathbb{C}P^1} \cdots \xrightarrow{\mathbb{C}P^1} B^2 \xrightarrow{\mathbb{C}P^1} pt$$

the total space B^{2n} is called a *Bott manifold*.

- (Dobrinskaya 2001) $M(I^n, \Lambda)$ is w.e.h. to a Bott manifold iff Λ_* is equivalent to a unipotent upper triangular matrix.
- Bott manifold may not be spin or string.

Theorem C (S. 2022)

Every string quasitoric manifold over I^n is w.e.h. to a Bott manifold.

Theorem C (S. 2022)

Every string quasitoric manifold over I^n is w.e.h. to a Bott manifold.

• More generalized version: If $M(P \times I^n, \Lambda)$ is string, then $M'(I^n, \Lambda')$ is a Bott manifold, where Λ' is the restricted characteristic matrix.

Caution: $M'(I^n, \Lambda')$ is not string in general.

Theorem D (S. 2022)

 $M(I^n \# P^n, \Lambda)$ is string iff it is w.e.h. to $M(I^n, \Lambda_L) \widetilde{\#} M(P^n, \Lambda_R)$ with both $M(I^n, \Lambda_L)$ and $M(P^n, \Lambda_R)$ string.

Theorem D (S. 2022)

 $M(I^n \# P^n, \Lambda)$ is string iff it is w.e.h. to $M(I^n, \Lambda_L) \widetilde{\#} M(P^n, \Lambda_R)$ with both $M(I^n, \Lambda_L)$ and $M(P^n, \Lambda_R)$ string.

• Connected sum $\# \sim$ equivariant connected sum $\widetilde{\#}$.

Theorem D (S. 2022)

 $M(I^n \# P^n, \Lambda)$ is string iff it is w.e.h. to $M(I^n, \Lambda_L) \widetilde{\#} M(P^n, \Lambda_R)$ with both $M(I^n, \Lambda_L)$ and $M(P^n, \Lambda_R)$ string.

- Connected sum # → equivariant connected sum #.
- "If" part follows from definition and "only if" part follows from decomposition guaranteed by string property.

Proposition (Dobrinskaya 2001)

Suppose $A \in Mat_{n \times n}(\mathbb{Z})$ and every proper principal minor of A is equal to 1. If det A = 1, then A is conjugate to a unipotent upper triangular matrix. If det A = -1, then A is conjugate to

$$\begin{pmatrix} 1 & b_1 & 0 & \cdots & 0 \\ 0 & 1 & b_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & b_{n-1} \\ b_n & 0 & \cdots & 0 & 1 \end{pmatrix},$$

where
$$\prod_{i=1}^{n} b_i = (-1)^n \cdot 2$$
.

Label the facets of $C_2(5) \times I^{n-2}$ s.t. $\{F_i\}_{i=1}^5$ correspond to five facets of $C_2(5)$ and $F_i \cap F_{n-2+i} = \emptyset$ for $6 \le i \le n+3$. Choose the basis of $H^4(M(P,\Lambda))$ as v_4v_5 , $\{v_iv_j\}_{n+4 \le i < j \le 2n+1}$, $\{v_iv_j\}_{3 \le i \le 5, n+4 \le j \le 2n+1}$ and write coefficients as $c_{i,j}, c'_{i,j}$ and $c_{4,5}$ respectively.

Label the facets of $C_2(5) \times I^{n-2}$ s.t. $\{F_i\}_{i=1}^5$ correspond to five facets of $C_2(5)$ and $F_i \cap F_{n-2+i} = \emptyset$ for $6 \le i \le n+3$. Choose the basis of $H^4(M(P,\Lambda))$ as v_4v_5 , $\{v_iv_j\}_{n+4 \le i < j \le 2n+1}$, $\{v_iv_j\}_{3 \le i \le 5, n+4 \le j \le 2n+1}$ and write coefficients as $c_{i,j}, c'_{i,j}$ and $c_{4,5}$ respectively.

Notation

Given
$$\Lambda = (\lambda_{s,t})_{n \times m}$$
, write $\Delta_{j_1,j_2} = \det \begin{pmatrix} \lambda_{1,j_1} & \lambda_{1,j_2} \\ \lambda_{2,j_1} & \lambda_{2,j_2} \end{pmatrix}$ for $1 \leq j_1 < j_2 \leq m$ and $l_j = \Delta_{j-1,j} \cdot \Delta_{j,j+1} \cdot \Delta_{j+1,j-1}$ for $1 \leq j \leq 5$ with subscripts taken modulo 5.

•
$$c_{i,j} = -\lambda_{i-n-1,j}\rho_i - \lambda_{j-n-1,i}\rho_j + \rho_{i,j};$$

 $c'_{3,j} = -\lambda_{1,j}\rho_3 - \lambda_{j-n-1,3}\rho_j + \rho_{3,j};$
 $c'_{5,j} = -\lambda_{2,j}\rho_5 - \lambda_{j-n-1,5}\rho_j + \rho_{5,j}.$

•
$$c_{i,j} = -\lambda_{i-n-1,j}\rho_i - \lambda_{j-n-1,i}\rho_j + \rho_{i,j};$$

 $c'_{3,j} = -\lambda_{1,j}\rho_3 - \lambda_{j-n-1,3}\rho_j + \rho_{3,j};$
 $c'_{5,j} = -\lambda_{2,j}\rho_5 - \lambda_{j-n-1,5}\rho_j + \rho_{5,j}.$

•
$$c'_{4,j} = -\Delta_{3,4}\Delta_{3,j}\rho_4 - \lambda_{j-n-1,4}\rho_j + \rho_{4,j} + \Delta_{3,4}\Delta_{4,j}(l_3\rho_3 + \Delta_{3,4}\rho_{3,4}).$$

•
$$c_{i,j} = -\lambda_{i-n-1,j}\rho_i - \lambda_{j-n-1,i}\rho_j + \rho_{i,j};$$

 $c'_{3,j} = -\lambda_{1,j}\rho_3 - \lambda_{j-n-1,3}\rho_j + \rho_{3,j};$
 $c'_{5,j} = -\lambda_{2,j}\rho_5 - \lambda_{j-n-1,5}\rho_j + \rho_{5,j}.$

- $c'_{4,j} = -\Delta_{3,4}\Delta_{3,j}\rho_4 \lambda_{j-n-1,4}\rho_j + \rho_{4,j} + \Delta_{3,4}\Delta_{4,j}(l_3\rho_3 + \Delta_{3,4}\rho_{3,4}).$
- $c_{4,5} = \sum_{j=1}^{5} (l_j \rho_j + \Delta_{j,j+1} \rho_{j,j+1})$ with subscripts modulo 5.

- $c_{i,j} = -\lambda_{i-n-1,j}\rho_i \lambda_{j-n-1,i}\rho_j + \rho_{i,j};$ $c'_{3,j} = -\lambda_{1,j}\rho_3 - \lambda_{j-n-1,3}\rho_j + \rho_{3,j};$ $c'_{5,j} = -\lambda_{2,j}\rho_5 - \lambda_{j-n-1,5}\rho_j + \rho_{5,j}.$
- $c'_{4,j} = -\Delta_{3,4}\Delta_{3,j}\rho_4 \lambda_{j-n-1,4}\rho_j + \rho_{4,j} + \Delta_{3,4}\Delta_{4,j}(l_3\rho_3 + \Delta_{3,4}\rho_{3,4}).$
- $c_{4,5} = \sum_{j=1}^{5} (l_j \rho_j + \Delta_{j,j+1} \rho_{j,j+1})$ with subscripts modulo 5.

•
$$c_{i,j} = -\lambda_{i-n-1,j}\rho_i - \lambda_{j-n-1,i}\rho_j + \rho_{i,j};$$

 $c'_{3,j} = -\lambda_{1,j}\rho_3 - \lambda_{j-n-1,3}\rho_j + \rho_{3,j};$
 $c'_{5,j} = -\lambda_{2,j}\rho_5 - \lambda_{j-n-1,5}\rho_j + \rho_{5,j}.$

- $c'_{4,j} = -\Delta_{3,4}\Delta_{3,j}\rho_4 \lambda_{j-n-1,4}\rho_j + \rho_{4,j} + \Delta_{3,4}\Delta_{4,j}(l_3\rho_3 + \Delta_{3,4}\rho_{3,4}).$
- $c_{4,5} = \sum_{j=1}^{5} (l_j \rho_j + \Delta_{j,j+1} \rho_{j,j+1})$ with subscripts modulo 5.

Proposition (S. 2022)

 $M(C_2(5) \times I^{n-2}, \Lambda)$ is string $\Leftrightarrow \sum_{k=1}^n \lambda_{k,i} \equiv 1 \pmod{2}$ for $3 \le i \le 5$; $n+4 \le i \le 2n+1$ and all coefficients listed above vanish.

Real analogue

Replace T^n by \mathbb{Z}_2^n in Canonical Construction: real characteristic pair $(P,\Lambda) \rightsquigarrow \text{small cover } M_{\mathbb{R}}(P,\Lambda)$.

Real analogue

Replace T^n by \mathbb{Z}_2^n in Canonical Construction: real characteristic pair $(P,\Lambda) \sim \text{small cover } M_{\mathbb{R}}(P,\Lambda)$.

- $H^*(M_{\mathbb{R}}(P,\Lambda);\mathbb{Z}_2) \cong \mathbb{Z}_2[v_1,\ldots,v_m]/(\mathcal{I}+\mathcal{J}).$
- $w(M_{\mathbb{R}}(P,\Lambda)) = \prod_{i=1}^{m} (1+v_i); p(M_{\mathbb{R}}(P,\Lambda)) = 1.$

Replace T^n by \mathbb{Z}_2^n in Canonical Construction: real characteristic pair $(P, \Lambda) \sim \text{small cover } M_{\mathbb{R}}(P, \Lambda)$.

- $H^*(M_{\mathbb{R}}(P,\Lambda);\mathbb{Z}_2) \cong \mathbb{Z}_2[v_1,\ldots,v_m]/(\mathcal{I}+\mathcal{J}).$
- $w(M_{\mathbb{R}}(P,\Lambda)) = \prod_{i=1}^{m} (1+v_i); p(M_{\mathbb{R}}(P,\Lambda)) = 1.$
- Real analogue: different results via simpler arguments.

Replace T^n by \mathbb{Z}_2^n in Canonical Construction: real characteristic pair $(P, \Lambda) \sim \text{small cover } M_{\mathbb{R}}(P, \Lambda)$.

- $H^*(M_{\mathbb{R}}(P,\Lambda);\mathbb{Z}_2) \cong \mathbb{Z}_2[v_1,\ldots,v_m]/(\mathcal{I}+\mathcal{J}).$
- $w(M_{\mathbb{R}}(P,\Lambda)) = \prod_{i=1}^{m} (1+v_i); p(M_{\mathbb{R}}(P,\Lambda)) = 1.$
- Real analogue: different results via simpler arguments.
- Partial results in certain cases can be found in the work of Choi-Masuda-Oum, Dsouza-Uma and Huang.

Real analogue

• 2-dimensional string small covers are just equivariant connected sum of $\mathbb{R}P^1 \times \mathbb{R}P^1$.

- 2-dimensional string small covers are just equivariant connected sum of $\mathbb{R}P^1 \times \mathbb{R}P^1$.
- Every 3-dimensional simple polytope can be realized as the orbit polytope of a string small cover. In particular, every string small cover over prism is of bundle type.

- 2-dimensional string small covers are just equivariant connected sum of $\mathbb{R}P^1 \times \mathbb{R}P^1$.
- Every 3-dimensional simple polytope can be realized as the orbit polytope of a string small cover. In particular, every string small cover over prism is of bundle type.
- $C_2(m_1) \times C_2(m_2)$ can be realized as the orbit polytope of a string small cover $\Leftrightarrow m_1m_2 \equiv 0 \pmod{2}$.

- 2-dimensional string small covers are just equivariant connected sum of $\mathbb{R}P^1 \times \mathbb{R}P^1$.
- Every 3-dimensional simple polytope can be realized as the orbit polytope of a string small cover. In particular, every string small cover over prism is of bundle type.
- $C_2(m_1) \times C_2(m_2)$ can be realized as the orbit polytope of a string small cover $\Leftrightarrow m_1 m_2 \equiv 0 \pmod{2}$.
- $\prod_{i=1}^k \Delta^{n_i}$ with $n_i \ge 2$ can be realized as the orbit polytope of a string small cover $\Leftrightarrow n_i \equiv 1 \pmod{2}$ for $1 \le i \le k$ and $\exists i_0$ s.t. $n_{i_0} \equiv 3 \pmod{4}$.

Can we find some necessary and/or sufficient conditions in combinatorial language for orbit polytopes of string quasitoric manifolds?

Can we find some necessary and/or sufficient conditions in combinatorial language for orbit polytopes of string quasitoric manifolds?

In particular, if P^n can be realized as the orbit polytope of a string quasitoric manifold, is there an upper bound for the chromatic number $\gamma(P^n)$?

• (Buchstaber-Panov-Ray 2007) Every element in Ω^{U}_{*} has a quasitoric representative;

- (Buchstaber-Panov-Ray 2007) Every element in Ω^{U}_{*} has a quasitoric representative;
- (Limonchenko-Lü-Panov 2018) Polynomial generators of $\Omega_*^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ can be chosen as Calabi-Yau hypersurfaces in certain quasitoric manifolds.

- (Buchstaber-Panov-Ray 2007) Every element in Ω_*^U has a quasitoric representative;
- (Limonchenko-Lü-Panov 2018) Polynomial generators of $\Omega_*^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ can be chosen as Calabi-Yau hypersurfaces in certain quasitoric manifolds.

Search for nontrivial string manifolds with the help of $M(P,\Lambda)$ String bordism & Stolz Conjecture