On string quasitoric manifolds and their orbit polytopes

Qifan Shen @ Fudan University

Toric Topology 2022
March 23-25, Osaka City University

March 24, 2022

OUTLINE

1 Background
■ Combinatorial pair (P, Λ)
■ Quasitoric manifold $M(P, \Lambda)$

- String property

2 Main results
■ Target and straightforward approach
■ Low dimensional case

- Few facets case
- Real analogue

3 Further discussion

Definition (simple polytope and flag polytope)

A polytope is called simple if each codimension- k face is the intersection of exactly k facets.
A simple polytope is called flag if each family of pairwise intersecting facets has non-empty common intersection.

Definition (simple polytope and flag polytope)

A polytope is called simple if each codimension- k face is the intersection of exactly k facets.
A simple polytope is called flag if each family of pairwise intersecting facets has non-empty common intersection.

Definition (f-vector and h-vector)

Given an n-dimensional polytope P, let f_{i} denote the number of its i-dimensional faces and determine h_{i} by

$$
\sum_{i=0}^{n} h_{i} s^{n-i}=\sum_{i=0}^{n} f_{i}(s-1)^{i}
$$

$\boldsymbol{f}(P)=\left(f_{0}, f_{1}, \ldots, f_{n-1}, 1\right)$ and $\boldsymbol{h}(P)=\left(h_{0}, h_{1}, \ldots, h_{n-1}, h_{n}\right)$ are called f-vector and h-vector of P respectively.

Definition (f-vector and h-vector)

Given an n-dimensional polytope P, let f_{i} denote the number of its i-dimensional faces and determine h_{i} by

$$
\sum_{i=0}^{n} h_{i} s^{n-i}=\sum_{i=0}^{n} f_{i}(s-1)^{i}
$$

$\boldsymbol{f}(P)=\left(f_{0}, f_{1}, \ldots, f_{n-1}, 1\right)$ and $\boldsymbol{h}(P)=\left(h_{0}, h_{1}, \ldots, h_{n-1}, h_{n}\right)$ are called f-vector and h-vector of P respectively.

- (Dehn-Sommerville relation) If P^{n} is simple, then $h_{i}=h_{n-i}$ for $0 \leq i \leq n$.

Definition (characteristic matrix)

For an n-dimensional simple polytope P with facets $\left\{F_{i}\right\}_{i=1}^{m}$, $\Lambda=\left(\boldsymbol{\lambda}_{\mathbf{1}}, \cdots, \boldsymbol{\lambda}_{\boldsymbol{m}}\right) \in \operatorname{Mat}_{n \times m}(\mathbb{Z})$ is a corresponding characteristic matrix if the following nonsingular condition holds:

$$
\forall p=\bigcap_{i=1}^{k} F_{j_{i}} \Rightarrow \operatorname{det}\left(\Lambda_{p}\right)=\operatorname{det}\left(\boldsymbol{\lambda}_{\boldsymbol{j}_{1}}, \cdots, \boldsymbol{\lambda}_{\boldsymbol{j}_{\boldsymbol{n}}}\right)= \pm 1 .
$$

Definition (characteristic matrix)

For an n-dimensional simple polytope P with facets $\left\{F_{i}\right\}_{i=1}^{m}$, $\Lambda=\left(\boldsymbol{\lambda}_{\mathbf{1}}, \cdots, \boldsymbol{\lambda}_{m}\right) \in \operatorname{Mat}_{n \times m}(\mathbb{Z})$ is a corresponding characteristic matrix if the following nonsingular condition holds:

$$
\forall p=\bigcap_{i=1}^{k} F_{j_{i}} \Rightarrow \operatorname{det}\left(\Lambda_{p}\right)=\operatorname{det}\left(\boldsymbol{\lambda}_{j_{1}}, \cdots, \boldsymbol{\lambda}_{j_{n}}\right)= \pm 1
$$

Example

$$
P=C_{2}(3) \text { i.e., triangle } \Rightarrow \Lambda=\left(\begin{array}{lll}
1 & 0 & \delta_{1} \\
0 & 1 & \delta_{2}
\end{array}\right) \text { with } \delta_{1}, \delta_{2}= \pm 1
$$

Canonical Construction: $(P, \Lambda) \leadsto M(P, \Lambda)$
For each $p \in P$, there exists a unique face $f(p)=\bigcap_{i=1}^{k} F_{j_{i}}$ s.t. p is in the relative interior of $f(p)$.

Canonical Construction: $(P, \Lambda) \sim M(P, \Lambda)$

For each $p \in P$, there exists a unique face $f(p)=\bigcap_{i=1}^{k} F_{j_{i}}$ s.t. p is in the relative interior of $f(p)$.

Regard $\left(\boldsymbol{\lambda}_{j_{1}}, \cdots, \boldsymbol{\lambda}_{j_{k}}\right)=\left(\lambda_{i, j}\right) \in \operatorname{Mat}_{n \times k}(\mathbb{Z})$ as a map from T^{k} to T^{n}, sending $\left(t_{1}, \ldots, t_{k}\right)$ to $\left(\prod_{i=1}^{k} t_{i}^{\lambda_{1, i}}, \ldots, \prod_{i=1}^{k} t_{i}^{\lambda_{n, i}}\right)$.
Let $G(p)$ denote the image.

Canonical Construction: $(P, \Lambda) \sim M(P, \Lambda)$

For each $p \in P$, there exists a unique face $f(p)=\bigcap_{i=1}^{k} F_{j_{i}}$ s.t. p is in the relative interior of $f(p)$.

Regard $\left(\boldsymbol{\lambda}_{j_{1}}, \cdots, \boldsymbol{\lambda}_{j_{k}}\right)=\left(\lambda_{i, j}\right) \in \operatorname{Mat}_{n \times k}(\mathbb{Z})$ as a map from T^{k} to T^{n}, sending $\left(t_{1}, \ldots, t_{k}\right)$ to $\left(\prod_{i=1}^{k} t_{i}^{\lambda_{1, i}}, \ldots, \prod_{i=1}^{k} t_{i}^{\lambda_{n, i}}\right)$.
Let $G(p)$ denote the image.
$M(P, \Lambda)=\left(P \times T^{n}\right) / \sim$ with $\left(p, \boldsymbol{t}_{\mathbf{1}}\right) \sim\left(p, \boldsymbol{t}_{\mathbf{2}}\right) \Leftrightarrow \boldsymbol{t}_{\mathbf{1}}^{-\mathbf{1}} \boldsymbol{t}_{\mathbf{2}} \in G(p)$.

Canonical Construction: $(P, \Lambda) \sim M(P, \Lambda)$
For each $p \in P$, there exists a unique face $f(p)=\bigcap_{i=1}^{k} F_{j_{i}}$ s.t. p is in the relative interior of $f(p)$.

Regard $\left(\boldsymbol{\lambda}_{j_{1}}, \cdots, \boldsymbol{\lambda}_{j_{k}}\right)=\left(\lambda_{i, j}\right) \in \operatorname{Mat}_{n \times k}(\mathbb{Z})$ as a map from T^{k} to T^{n}, sending $\left(t_{1}, \ldots, t_{k}\right)$ to $\left(\prod_{i=1}^{k} t_{i}^{\lambda_{1, i}}, \ldots, \prod_{i=1}^{k} t_{i}^{\lambda_{n, i}}\right)$.
Let $G(p)$ denote the image.
$M(P, \Lambda)=\left(P \times T^{n}\right) / \sim$ with $\left(p, \boldsymbol{t}_{\mathbf{1}}\right) \sim\left(p, \boldsymbol{t}_{\mathbf{2}}\right) \Leftrightarrow \boldsymbol{t}_{\mathbf{1}}^{\mathbf{- 1}} \boldsymbol{t}_{\mathbf{2}} \in G(p)$.

Example

$$
P=\Delta^{n} \Rightarrow M(P, \Lambda)=\mathbb{C} P^{n} .
$$

Remark

1. Characteristic matrix corresponding to P may NOT exist \sim Buchstaber invariant $s(P)$.

Remark

1. Characteristic matrix corresponding to P may NOT exist \leadsto Buchstaber invariant $s(P)$.

Example: n-dimensional dual cyclic polytope with more than $2^{n}-1$ facets when $n \geq 4$.

Remark

1. Characteristic matrix corresponding to P may NOT exist \leadsto Buchstaber invariant $s(P)$.

Example: n-dimensional dual cyclic polytope with more than $2^{n}-1$ facets when $n \geq 4$.
2. Canonical Construction method can be applied to the case of moment-angle manifold.

- T^{n}-action on $M(P, \Lambda)$: free when p lies in the interior of P; trivial when p is the vertex of P.
- T^{n}-action on $M(P, \Lambda)$: free when p lies in the interior of P; trivial when p is the vertex of P.
- Quotient of moment-angle manifold \Rightarrow smooth, orientable and unitary structure on $M(P, \Lambda)$.
- T^{n}-action on $M(P, \Lambda)$: free when p lies in the interior of P; trivial when p is the vertex of P.
- Quotient of moment-angle manifold \Rightarrow smooth, orientable and unitary structure on $M(P, \Lambda)$.
- Cell decomposition induced from star neighborhood of vertices \Rightarrow explicit expression of $\beta^{i}(-), H_{T}^{*}(-), H^{*}(-)$ and $c_{i}(-), p_{i}(-)$.

Proposition (Davis-Januszkiewicz 1991)

The integral cohomology groups of $M(P, \Lambda)$ vanish in odd dimensions and therefore are free abelian in even dimensions. The Betti numbers are given by

$$
\beta^{2 i}(M(P, \Lambda))=h_{i}(P) \quad 0 \leq i \leq n
$$

where $\left\{h_{i}(P)\right\}_{i=0}^{n}$ are components of h-vector of P.

Proposition (Davis-Januszkiewicz 1991)

The integral cohomology groups of $M(P, \Lambda)$ vanish in odd dimensions and therefore are free abelian in even dimensions. The Betti numbers are given by

$$
\beta^{2 i}(M(P, \Lambda))=h_{i}(P) \quad 0 \leq i \leq n
$$

where $\left\{h_{i}(P)\right\}_{i=0}^{n}$ are components of h-vector of P.

- Dehn-Sommerville relation \leftrightarrow Poincaré Duality.

Proposition (Davis-Januszkiewicz 1991)

Write $\Lambda=\left(\lambda_{i, j}\right) \in \operatorname{Mat}_{n \times m}(\mathbb{Z})$, then the integral cohomology ring of $M(P, \Lambda)$ is given by

$$
H^{*}(M(P, \Lambda)) \cong \mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] /(\mathcal{I}+\mathcal{J})
$$

where face ring ideal \mathcal{I} is generated by $\prod_{i=1}^{k} v_{j_{i}}$ for $\bigcap_{i=1}^{k} F_{j_{i}}=\emptyset$ and linear ideal \mathcal{J} is generated by $\sum_{i=1}^{m} \lambda_{l, i} v_{i}$ for $1 \leq l \leq n$.

Proposition (Davis-Januszkiewicz 1991)

Write $\Lambda=\left(\lambda_{i, j}\right) \in \operatorname{Mat}_{n \times m}(\mathbb{Z})$, then the integral cohomology ring of $M(P, \Lambda)$ is given by

$$
H^{*}(M(P, \Lambda)) \cong \mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] /(\mathcal{I}+\mathcal{J})
$$

where face ring ideal \mathcal{I} is generated by $\prod_{i=1}^{k} v_{j_{i}}$ for $\bigcap_{i=1}^{k} F_{j_{i}}=\emptyset$ and linear ideal \mathcal{J} is generated by $\sum_{i=1}^{m} \lambda_{l, i} \mathfrak{v}_{i}$ for $1 \leq l \leq n$.

- For each facet $F_{j}, M_{j}=\pi^{-1}\left(F_{j}\right)$ is called a characteristic submanifold, where $\pi: M(P, \Lambda) \rightarrow P$ is the natural projection. Generator v_{j} is the Poincaré dual of M_{j}.

Proposition (Davis-Januszkiewicz 1991)

Chern classes and Pontryagin classes are given by:

$$
c(M(P, \Lambda))=\prod_{j=1}^{m}\left(1+v_{j}\right) \quad p(M(P, \Lambda))=\prod_{j=1}^{m}\left(1+v_{j}^{2}\right) .
$$

In particular, $w_{2}(M(P, \Lambda)) \equiv c_{1}(M(P, \Lambda)) \equiv \sum_{j=1}^{m} v_{j}(\bmod 2)$ and $p_{1}(M(P, \Lambda))=\sum_{j=1}^{m} v_{j}^{2}$.

Proposition (Davis-Januszkiewicz 1991)

Chern classes and Pontryagin classes are given by:

$$
c(M(P, \Lambda))=\prod_{j=1}^{m}\left(1+v_{j}\right) \quad p(M(P, \Lambda))=\prod_{j=1}^{m}\left(1+v_{j}^{2}\right) .
$$

In particular, $w_{2}(M(P, \Lambda)) \equiv c_{1}(M(P, \Lambda)) \equiv \sum_{j=1}^{m} v_{j}(\bmod 2)$ and $p_{1}(M(P, \Lambda))=\sum_{j=1}^{m} v_{j}^{2}$.

Example

$H^{*}\left(M\left(C_{2}(3), \Lambda\right)\right) \cong \mathbb{Z}[v] /\left\langle v^{3}\right\rangle$.
$w_{2}\left(M\left(C_{2}(3), \Lambda\right)\right)=\left(\delta_{1}+\delta_{2}+1\right) v=v ; p_{1}\left(M\left(C_{2}(3), \Lambda\right)\right)=3 v^{2}$.

Definition (weakly equivariant homeomorphism)

Two T^{n}-manifolds M, N are weakly equivariantly homeomorphic (w.e.h.) if $\exists \phi \in \operatorname{Aut} T^{n}$ and $h \in \operatorname{Homeo}(M, N)$ s.t. $\forall t \in T^{n}$ and $m \in M, h(t \cdot m)=\phi(t) \cdot h(m)$.

Definition (weakly equivariant homeomorphism)

Two T^{n}-manifolds M, N are weakly equivariantly homeomorphic (w.e.h.) if $\exists \phi \in \operatorname{Aut} T^{n}$ and $h \in \operatorname{Homeo}(M, N)$ s.t. $\forall t \in T^{n}$ and $m \in M, h(t \cdot m)=\phi(t) \cdot h(m)$.

Three types of group actions on (P, Λ) inducing equivalence:
(1) column permutation by $\operatorname{Aut}\left(\partial P^{*}\right)$;
(2) sign permutation of columns by \mathbb{Z}_{2}^{m};
(3) left multiplication by $\mathrm{GL}_{\mathrm{n}}(\mathbb{Z})$.

Definition (weakly equivariant homeomorphism)

Two T^{n}-manifolds M, N are weakly equivariantly homeomorphic (w.e.h.) if $\exists \phi \in \operatorname{Aut} T^{n}$ and $h \in \operatorname{Homeo}(M, N)$ s.t. $\forall t \in T^{n}$ and $m \in M, h(t \cdot m)=\phi(t) \cdot h(m)$.

Three types of group actions on (P, Λ) inducing equivalence:
(1) column permutation by $\operatorname{Aut}\left(\partial P^{*}\right)$;
(2) sign permutation of columns by \mathbb{Z}_{2}^{m};
(3) left multiplication by $\mathrm{GL}_{n}(\mathbb{Z})$.

Fact

There is a one-to-one correspondence between w.e.h. classes of quasitoric manifolds and equivalent classes of characteristic pairs.

Let V be a real vector bundle of rank n over a manifold M. Additional structures lead to liftings in Whitehead tower:

String property

Let V be a real vector bundle of rank n over a manifold M. Additional structures lead to liftings in Whitehead tower:

String property

Let V be a real vector bundle of rank n over a manifold M. Additional structures lead to liftings in Whitehead tower:

M is string $\Leftrightarrow w_{1}(M)=w_{2}(M)=p_{1}(M) / 2=0$.

$M(-,-):$ combinatorial data \leadsto topological objects

$M(-,-)$: combinatorial data \leadsto topological objects

- Natural target: topological properties expressed in a combinatorial way.
$M(-,-)$: combinatorial data \sim topological objects
- Natural target: topological properties expressed in a combinatorial way.
- Straightforward approach: express p_{1} as a \mathbb{Q}-linear combination of certain $H^{4}(M(P, \Lambda))$ basis.
$M(-,-)$: combinatorial data \sim topological objects
- Natural target: topological properties expressed in a combinatorial way.
- Straightforward approach: express p_{1} as a \mathbb{Q}-linear combination of certain $H^{4}(M(P, \Lambda))$ basis.
- w_{2} and p_{1} remain invariant under equivalence \leadsto refined characteristic pair $(P, \Lambda): \cap_{i=1}^{n} F_{i} \neq \emptyset$ and $\Lambda=\left[\mathrm{I}_{\mathrm{n}} \mid \Lambda_{*}\right]$.

Easy task: $w_{2}=0 \Leftrightarrow \sum_{i=1}^{n} \lambda_{i, j}=1(\bmod 2)$ for $1 \leq j \leq m$.

Easy task: $w_{2}=0 \Leftrightarrow \sum_{i=1}^{n} \lambda_{i, j}=1(\bmod 2)$ for $1 \leq j \leq m$.
Hard problem: $p_{1}=0$ is a non-linear restriction.

Easy task: $w_{2}=0 \Leftrightarrow \sum_{i=1}^{n} \lambda_{i, j}=1(\bmod 2)$ for $1 \leq j \leq m$.
Hard problem: $p_{1}=0$ is a non-linear restriction.

- $\left\{v_{i}\right\}_{i=n+1}^{m}$ form a \mathbb{Z}-basis of $H^{2}(M(P, \Lambda))$;

Easy task: $w_{2}=0 \Leftrightarrow \sum_{i=1}^{n} \lambda_{i, j}=1(\bmod 2)$ for $1 \leq j \leq m$.
Hard problem: $p_{1}=0$ is a non-linear restriction.

- $\left\{v_{i}\right\}_{i=n+1}^{m}$ form a \mathbb{Z}-basis of $H^{2}(M(P, \Lambda))$;
- $\left\{v_{i} v_{j}\right\}_{n+1 \leq i, j \leq m}$ are \mathbb{Q}-generators of $H^{4}(M(P, \Lambda))$;

Easy task: $w_{2}=0 \Leftrightarrow \sum_{i=1}^{n} \lambda_{i, j}=1(\bmod 2)$ for $1 \leq j \leq m$.
Hard problem: $p_{1}=0$ is a non-linear restriction.

- $\left\{v_{i}\right\}_{i=n+1}^{m}$ form a \mathbb{Z}-basis of $H^{2}(M(P, \Lambda))$;
- $\left\{v_{i} v_{j}\right\}_{n+1 \leq i, j \leq m}$ are \mathbb{Q}-generators of $H^{4}(M(P, \Lambda))$;
- Independency of relations in $H^{4}(M(P, \Lambda))$:

$$
\binom{m-n+1}{2}-\left[\binom{m}{2}-f_{n-2}(P)\right]=\beta^{4}(M(P, \Lambda)) .
$$

(Orlik-Raymond 1970) 4-dimensional quasitoric manifolds are homeomorphic to the equivariant connected sum of $\mathbb{C} P^{2}, \overline{\mathbb{C} P^{2}}$ and $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$.
(Orlik-Raymond 1970) 4-dimensional quasitoric manifolds are homeomorphic to the equivariant connected sum of $\mathbb{C} P^{2}, \overline{\mathbb{C} P^{2}}$ and $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$.

- $C_{2}(m)$ can be realized as the orbit polytope of a string quasitoric manifold $\Leftrightarrow m \equiv 0(\bmod 2)$.
(Orlik-Raymond 1970) 4-dimensional quasitoric manifolds are homeomorphic to the equivariant connected sum of $\mathbb{C} P^{2}, \overline{\mathbb{C} P^{2}}$ and $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$.
- $C_{2}(m)$ can be realized as the orbit polytope of a string quasitoric manifold $\Leftrightarrow m \equiv 0(\bmod 2)$.
- There exists exactly one homeomorphism class of string quasitoric manifold over $C_{2}\left(2 m_{0}\right)$ for each $m_{0} \geq 2$. While up to w.e.h., there are countably many equivalent classes.

Theorem A (S. 2022)
A 3-dimensional simple polytope can be realized as the orbit polytope of a string quasitoric manifold iff it is 3-colorable.

Theorem A (S. 2022)
A 3-dimensional simple polytope can be realized as the orbit polytope of a string quasitoric manifold iff it is 3-colorable.

- (Davis-Januszkiewicz 1991) "If" part is guaranteed by pullback of the linear model.

Theorem A (S. 2022)

A 3-dimensional simple polytope can be realized as the orbit polytope of a string quasitoric manifold iff it is 3-colorable.

- (Davis-Januszkiewicz 1991) "If" part is guaranteed by pullback of the linear model.
- (Joswig 2001) An n-dimensional simple polytope is n-colorable iff all of its 2-faces are polygons with even number of edges.

Theorem A (S. 2022)

A 3-dimensional simple polytope can be realized as the orbit polytope of a string quasitoric manifold iff it is 3-colorable.

- (Davis-Januszkiewicz 1991) "If" part is guaranteed by pullback of the linear model.
- (Joswig 2001) An n-dimensional simple polytope is n-colorable iff all of its 2 -faces are polygons with even number of edges.
- Parallel results are NOT valid in dimension >3.

Example

$M\left(C_{2}(4) \times C_{2}(5), \Lambda\right)$ is string if Λ is equivalent to

$$
\left(\begin{array}{ll|ll|ll|lll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 2 & 2 & 2 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Example

$M\left(C_{2}(4) \times C_{2}(5), \Lambda\right)$ is string if Λ is equivalent to

$$
\left(\begin{array}{ll|ll|ll|lll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 2 & 2 & 2 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Proposition (S. 2022)

$C_{2}\left(m_{1}\right) \times C_{2}\left(m_{2}\right)$ can be realized as the orbit polytope of a string quasitoric manifold $\Leftrightarrow m_{1}, m_{2} \geq 4$ and $m_{1} m_{2} \equiv 0(\bmod 2)$.

Let $L_{2 k}=C_{2}(2 k) \times I$ denote the prism with $2 k$ side facets.

Let $L_{2 k}=C_{2}(2 k) \times I$ denote the prism with $2 k$ side facets.

Example (string but NOT bundle type)

$$
M\left(L_{6}, \Lambda\right) \text { with } \Lambda=\left(\begin{array}{c|cc|cccc|c}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

Example (string but NOT bundle type)

$$
M\left(L_{6}, \Lambda\right) \text { with } \Lambda=\left(\begin{array}{c|cc|cccc|c}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

Example (string but NOT bundle type)

$$
M\left(L_{6}, \Lambda\right) \text { with } \Lambda=\left(\begin{array}{c|cc|cccc|c}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

Example (string but NOT bundle type)

$$
M\left(L_{6}, \Lambda\right) \text { with } \Lambda=\left(\begin{array}{c|cc|cccc|c}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

Example (string but NOT bundle type)

$$
M\left(L_{6}, \Lambda\right) \text { with } \Lambda=\left(\begin{array}{c|cc|cccc|c}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

Example (string but NOT bundle type)
$M\left(L_{6}, \Lambda\right)$ with $\Lambda=\left(\begin{array}{c|cc|cccc|c}1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2\end{array}\right)$.

Theorem B (S. 2022)

If $M\left(L_{2 k}, \Lambda\right)$ is string, then there exist $\left\{M\left(L_{2 k_{i}}, \Lambda_{i}\right)\right\}_{i=1}^{s}$ s.t. (1) $M\left(L_{2 k_{i}}, \Lambda_{i}\right)$ is of bundle type and string for $1 \leq i \leq s$;
(2) $M\left(L_{2 k}, \Lambda\right)=M\left(L_{2 k_{1}}, \Lambda_{1}\right) \widetilde{\#^{e}} \ldots \widetilde{\#}^{e} M\left(L_{2 k_{s}}, \Lambda_{s}\right)$ up to w.e.h..

Low dimensional case

Figure: $L_{6}=L_{4} \#^{e} L_{4}$

Figure: $L_{6}=L_{4} \#^{e} L_{4}$

Edge connected sum $\#^{e}$ together with compatible coloring \leadsto equivariant edge connected sum $\widetilde{\#^{e}}$.

Example (decomposition via $\widetilde{\#^{e}}$)

$$
\Lambda=\left(\begin{array}{c|cc|cccc|c}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

Example (decomposition via $\widetilde{\#^{e}}$)

$$
\Lambda=\left(\begin{array}{c|cc|cccc|c}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

Example (decomposition via $\widetilde{\#^{e}}$)

$$
\Lambda=\left(\begin{array}{c|cc|cccc|c}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

Example (decomposition via $\widetilde{\#^{e}}$)

$$
\Lambda=\left(\begin{array}{l|ll|llll|l}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2
\end{array}\right)
$$

$$
M\left(L_{6}, \Lambda\right)=M\left(L_{4}, \Lambda_{1}\right) \widetilde{\#^{e}} M\left(L_{4}, \Lambda_{2}\right) \text { with } \Lambda_{1}, \Lambda_{2} \text { equivalent to }
$$

$$
\left(\begin{array}{c|cc|cc|c}
1 & 0 & 0 & 2 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Key Observation

Given an n-dimensional simple polytope P, if there exist facets F and $\left\{F_{j_{i}}\right\}_{i=1}^{n}$ s.t. $\bigcap_{i=1}^{n} F_{j_{i}} \neq \emptyset$ and $F \cap F_{j_{i}} \neq \emptyset$ for $1 \leq i \leq n$, then P can NOT be realized as the orbit polytope of a string quasitoric manifold.

Key Observation

Given an n-dimensional simple polytope P, if there exist facets F and $\left\{F_{j_{i}}\right\}_{i=1}^{n}$ s.t. $\bigcap_{i=1}^{n} F_{j_{i}} \neq \emptyset$ and $F \cap F_{j_{i}} \neq \emptyset$ for $1 \leq i \leq n$, then P can NOT be realized as the orbit polytope of a string quasitoric manifold.

Example

1. $P=\prod_{i=1}^{k} P_{i}$ with some P_{i}^{*} 2-neighborly;
2. P with a triangular 2-face.

Proposition (Blind-Blind 1992)

If an n-dimensional simple polytope P is triangle-free, then the number of facets $f_{n-1}(P) \geq 2 n$. Moreover,
(1) $f_{n-1}(P)=2 n \Rightarrow P=I^{n}$;
(2) $f_{n-1}(P)=2 n+1 \Rightarrow P=C_{2}(5) \times I^{n-2}$;
(3) $f_{n-1}(P)=2 n+2 \Rightarrow P=C_{2}(6) \times I^{n-2}$ or $Q \times I^{n-3}$ or
$C_{2}(5) \times C_{2}(5) \times I^{n-4}$ where Q is an edge cut of $C_{2}(5) \times I$.

Proposition (Blind-Blind 1992)

If an n-dimensional simple polytope P is triangle-free, then the number of facets $f_{n-1}(P) \geq 2 n$. Moreover,
(1) $f_{n-1}(P)=2 n \Rightarrow P=I^{n}$;
(2) $f_{n-1}(P)=2 n+1 \Rightarrow P=C_{2}(5) \times I^{n-2}$;
(3) $f_{n-1}(P)=2 n+2 \Rightarrow P=C_{2}(6) \times I^{n-2}$ or $Q \times I^{n-3}$ or
$C_{2}(5) \times C_{2}(5) \times I^{n-4}$ where Q is an edge cut of $C_{2}(5) \times I$.

- label facets and choose basis appropriately \leadsto explicit formula for $p_{1}=\sum c_{i, j} v_{i} v_{j}$.

Figure: Q as an edge cut of $C_{2}(5) \times I$

Label the facets of I^{n} s.t. $F_{i} \cap F_{n+i}=\emptyset$ for $1 \leq i \leq n$. Choose the basis of $H^{4}\left(M\left(I^{n}, \Lambda\right)\right)$ as $\left\{v_{i} v_{j}\right\}_{n+1 \leq i<j \leq 2 n}$.

Label the facets of I^{n} s.t. $F_{i} \cap F_{n+i}=\emptyset$ for $1 \leq i \leq n$. Choose the basis of $H^{4}\left(M\left(I^{n}, \Lambda\right)\right)$ as $\left\{v_{i} v_{j}\right\}_{n+1 \leq i<j \leq 2 n}$.

Notation

Given $\Lambda=\left(\lambda_{s, t}\right)_{n \times m}$, write $\rho_{j}=\sum_{i=1}^{n} \lambda_{i, j}^{2}+1$ for $1 \leq j \leq m$ and $\rho_{j_{1}, j_{2}}=\rho_{j_{2}, j_{1}}=2 \sum_{i=1}^{n} \lambda_{i, j_{1}} \lambda_{i, j_{2}}$ for $1 \leq j_{1}<j_{2} \leq m$.

Label the facets of I^{n} s.t. $F_{i} \cap F_{n+i}=\emptyset$ for $1 \leq i \leq n$. Choose the basis of $H^{4}\left(M\left(I^{n}, \Lambda\right)\right)$ as $\left\{v_{i} v_{j}\right\}_{n+1 \leq i<j \leq 2 n}$.

Notation

Given $\Lambda=\left(\lambda_{s, t}\right)_{n \times m}$, write $\rho_{j}=\sum_{i=1}^{n} \lambda_{i, j}^{2}+1$ for $1 \leq j \leq m$ and $\rho_{j_{1}, j_{2}}=\rho_{j_{2}, j_{1}}=2 \sum_{i=1}^{n} \lambda_{i, j_{1}} \lambda_{i, j_{2}}$ for $1 \leq j_{1}<j_{2} \leq m$.

Proposition (S. 2022)

$M\left(I^{n}, \Lambda\right)$ is string $\Leftrightarrow \sum_{k=1}^{n} \lambda_{k, i} \equiv 1(\bmod 2)$ for $n+1 \leq i \leq 2 n$ and $\lambda_{i-n, i} \lambda_{i-n, j} \rho_{i}+\lambda_{j-n, j} \lambda_{j-n, i} \rho_{j}=\rho_{i, j}$ for $n+1 \leq i<j \leq 2 n$.

Definition (Bott manifold)

Given a $\mathbb{C} P^{1}$-bundle tower:

$$
B^{2 n} \xrightarrow{\mathbb{C} P^{1}} B^{2 n-2} \xrightarrow{\mathbb{C} P^{1}} \cdots \xrightarrow{\mathbb{C} P^{1}} B^{2} \xrightarrow{\mathbb{C} P^{1}} p t,
$$

the total space $B^{2 n}$ is called a Bott manifold.

Definition (Bott manifold)

Given a $\mathbb{C} P^{1}$-bundle tower:

$$
B^{2 n} \xrightarrow{\mathbb{C} P^{1}} B^{2 n-2} \xrightarrow{\mathbb{C} P^{1}} \cdots \xrightarrow{\mathbb{C} P^{1}} B^{2} \xrightarrow{\mathbb{C} P^{1}} p t,
$$

the total space $B^{2 n}$ is called a Bott manifold.

- (Dobrinskaya 2001) $M\left(I^{n}, \Lambda\right)$ is w.e.h. to a Bott manifold iff Λ_{*} is equivalent to a unipotent upper triangular matrix.

Definition (Bott manifold)

Given a $\mathbb{C} P^{1}$-bundle tower:

$$
B^{2 n} \xrightarrow{\mathbb{C} P^{1}} B^{2 n-2} \xrightarrow{\mathbb{C} P^{1}} \cdots \xrightarrow{\mathbb{C} P^{1}} B^{2} \xrightarrow{\mathbb{C} P^{1}} p t,
$$

the total space $B^{2 n}$ is called a Bott manifold.

- (Dobrinskaya 2001) $M\left(I^{n}, \Lambda\right)$ is w.e.h. to a Bott manifold iff Λ_{*} is equivalent to a unipotent upper triangular matrix.
- Bott manifold may not be spin or string.

Theorem C (S. 2022)

Every string quasitoric manifold over I^{n} is w.e.h. to a Bott manifold.

Theorem C (S. 2022)

Every string quasitoric manifold over I^{n} is w.e.h. to a Bott manifold.

- More generalized version: If $M\left(P \times I^{n}, \Lambda\right)$ is string, then $M^{\prime}\left(I^{n}, \Lambda^{\prime}\right)$ is a Bott manifold, where Λ^{\prime} is the restricted characteristic matrix.

Caution: $M^{\prime}\left(I^{n}, \Lambda^{\prime}\right)$ is not string in general.

Theorem D (S. 2022)
$M\left(I^{n} \# P^{n}, \Lambda\right)$ is string iff it is w.e.h. to $M\left(I^{n}, \Lambda_{L}\right) \# M\left(P^{n}, \Lambda_{R}\right)$ with both $M\left(I^{n}, \Lambda_{L}\right)$ and $M\left(P^{n}, \Lambda_{R}\right)$ string.

Theorem D (S. 2022)

$M\left(I^{n} \# P^{n}, \Lambda\right)$ is string iff it is w.e.h. to $M\left(I^{n}, \Lambda_{L}\right) \# M\left(P^{n}, \Lambda_{R}\right)$ with both $M\left(I^{n}, \Lambda_{L}\right)$ and $M\left(P^{n}, \Lambda_{R}\right)$ string.

- Connected sum $\# \leadsto$ equivariant connected sum $\#$.

Theorem D (S. 2022)

$M\left(I^{n} \# P^{n}, \Lambda\right)$ is string iff it is w.e.h. to $M\left(I^{n}, \Lambda_{L}\right) \# M\left(P^{n}, \Lambda_{R}\right)$ with both $M\left(I^{n}, \Lambda_{L}\right)$ and $M\left(P^{n}, \Lambda_{R}\right)$ string.

- Connected sum $\# \leadsto$ equivariant connected sum $\#$.
- "If" part follows from definition and "only if" part follows from decomposition guaranteed by string property.

Proposition (Dobrinskaya 2001)

Suppose $A \in \operatorname{Mat}_{n \times n}(\mathbb{Z})$ and every proper principal minor of A is equal to 1. If $\operatorname{det} A=1$, then A is conjugate to a unipotent upper triangular matrix. If $\operatorname{det} A=-1$, then A is conjugate to

$$
\left(\begin{array}{ccccc}
1 & b_{1} & 0 & \cdots & 0 \\
0 & 1 & b_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & b_{n-1} \\
b_{n} & 0 & \cdots & 0 & 1
\end{array}\right)
$$

where $\prod_{i=1}^{n} b_{i}=(-1)^{n} \cdot 2$.

Label the facets of $C_{2}(5) \times I^{n-2}$ s.t. $\left\{F_{i}\right\}_{i=1}^{5}$ correspond to five facets of $C_{2}(5)$ and $F_{i} \cap F_{n-2+i}=\emptyset$ for $6 \leq i \leq n+3$. Choose the basis of $H^{4}(M(P, \Lambda))$ as $v_{4} v_{5},\left\{v_{i} v_{j}\right\}_{n+4 \leq i<j \leq 2 n+1}$, $\left\{v_{i} v_{j}\right\}_{3 \leq i \leq 5, n+4 \leq j \leq 2 n+1}$ and write coefficients as $c_{i, j}, c_{i, j}^{\prime}$ and $c_{4,5}$ respectively.

Label the facets of $C_{2}(5) \times I^{n-2}$ s.t. $\left\{F_{i}\right\}_{i=1}^{5}$ correspond to five facets of $C_{2}(5)$ and $F_{i} \cap F_{n-2+i}=\emptyset$ for $6 \leq i \leq n+3$.
Choose the basis of $H^{4}(M(P, \Lambda))$ as $v_{4} v_{5},\left\{v_{i} v_{j}\right\}_{n+4 \leq i<j \leq 2 n+1}$, $\left\{v_{i} v_{j}\right\}_{3 \leq i \leq 5, n+4 \leq j \leq 2 n+1}$ and write coefficients as $c_{i, j}, c_{i, j}^{\prime}$ and $c_{4,5}$ respectively.

Notation

Given $\Lambda=\left(\lambda_{s, t}\right)_{n \times m}$, write $\Delta_{j_{1}, j_{2}}=\operatorname{det}\left(\begin{array}{ll}\lambda_{1, j_{1}} & \lambda_{1, j_{2}} \\ \lambda_{2, j_{1}} & \lambda_{2, j_{2}}\end{array}\right)$ for
$1 \leq j_{1}<j_{2} \leq m$ and $l_{j}=\Delta_{j-1, j} \cdot \Delta_{j, j+1} \cdot \Delta_{j+1, j-1}$ for $1 \leq j \leq 5$ with subscripts taken modulo 5.

- $c_{i, j}=-\lambda_{i-n-1, j} \rho_{i}-\lambda_{j-n-1, i} \rho_{j}+\rho_{i, j} ;$

$$
c_{3, j}^{\prime \prime}=-\lambda_{1, j} \rho_{3}-\lambda_{j-n-1,3} \rho_{j}+\rho_{3, j} ;
$$

$$
c_{5, j}^{\prime}=-\lambda_{2, j} \rho_{5}-\lambda_{j-n-1,5} \rho_{j}+\rho_{5, j}
$$

- $c_{i, j}=-\lambda_{i-n-1, j} \rho_{i}-\lambda_{j-n-1, i} \rho_{j}+\rho_{i, j} ;$ $c_{3, j}^{\prime}=-\lambda_{1, j} \rho_{3}-\lambda_{j-n-1,3} \rho_{j}+\rho_{3, j} ;$ $c_{5, j}^{\prime}=-\lambda_{2, j} \rho_{5}-\lambda_{j-n-1,5} \rho_{j}+\rho_{5, j}$.
- $c_{4, j}^{\prime}=-\Delta_{3,4} \Delta_{3, j} \rho_{4}-\lambda_{j-n-1,4} \rho_{j}+\rho_{4, j}+\Delta_{3,4} \Delta_{4, j}\left(l_{3} \rho_{3}+\Delta_{3,4} \rho_{3,4}\right)$.
- $c_{i, j}=-\lambda_{i-n-1, j} \rho_{i}-\lambda_{j-n-1, i} \rho_{j}+\rho_{i, j} ;$ $c_{3, j}^{\prime}=-\lambda_{1, j} \rho_{3}-\lambda_{j-n-1,3} \rho_{j}+\rho_{3, j} ;$ $c_{5, j}^{\prime}=-\lambda_{2, j} \rho_{5}-\lambda_{j-n-1,5} \rho_{j}+\rho_{5, j}$.
- $c_{4, j}^{\prime}=-\Delta_{3,4} \Delta_{3, j} \rho_{4}-\lambda_{j-n-1,4} \rho_{j}+\rho_{4, j}+\Delta_{3,4} \Delta_{4, j}\left(l_{3} \rho_{3}+\Delta_{3,4} \rho_{3,4}\right)$.
- $c_{4,5}=\sum_{j=1}^{5}\left(l_{j} \rho_{j}+\Delta_{j, j+1} \rho_{j, j+1}\right)$ with subscripts modulo 5 .
- $c_{i, j}=-\lambda_{i-n-1, j} \rho_{i}-\lambda_{j-n-1, i} \rho_{j}+\rho_{i, j} ;$ $c_{3, j}^{\prime}=-\lambda_{1, j} \rho_{3}-\lambda_{j-n-1,3} \rho_{j}+\rho_{3, j} ;$ $c_{5, j}^{\prime}=-\lambda_{2, j} \rho_{5}-\lambda_{j-n-1,5} \rho_{j}+\rho_{5, j}$.
- $c_{4, j}^{\prime}=-\Delta_{3,4} \Delta_{3, j} \rho_{4}-\lambda_{j-n-1,4} \rho_{j}+\rho_{4, j}+\Delta_{3,4} \Delta_{4, j}\left(l_{3} \rho_{3}+\Delta_{3,4} \rho_{3,4}\right)$.
- $c_{4,5}=\sum_{j=1}^{5}\left(l_{j} \rho_{j}+\Delta_{j, j+1} \rho_{j, j+1}\right)$ with subscripts modulo 5 .
- $c_{i, j}=-\lambda_{i-n-1, j} \rho_{i}-\lambda_{j-n-1, i} \rho_{j}+\rho_{i, j}$;
$c_{3, j}^{\prime}=-\lambda_{1, j} \rho_{3}-\lambda_{j-n-1,3} \rho_{j}+\rho_{3, j} ;$
$c_{5, j}^{\prime}=-\lambda_{2, j} \rho_{5}-\lambda_{j-n-1,5} \rho_{j}+\rho_{5, j}$.
- $c_{4, j}^{\prime}=-\Delta_{3,4} \Delta_{3, j} \rho_{4}-\lambda_{j-n-1,4} \rho_{j}+\rho_{4, j}+\Delta_{3,4} \Delta_{4, j}\left(l_{3} \rho_{3}+\Delta_{3,4} \rho_{3,4}\right)$.
- $c_{4,5}=\sum_{j=1}^{5}\left(l_{j} \rho_{j}+\Delta_{j, j+1} \rho_{j, j+1}\right)$ with subscripts modulo 5 .

Proposition (S. 2022)

$M\left(C_{2}(5) \times I^{n-2}, \Lambda\right)$ is string $\Leftrightarrow \sum_{k=1}^{n} \lambda_{k, i} \equiv 1(\bmod 2)$ for $3 \leq i \leq 5 ; n+4 \leq i \leq 2 n+1$ and all coefficients listed above vanish.

Replace T^{n} by \mathbb{Z}_{2}^{n} in Canonical Construction: real characteristic pair $(P, \Lambda) \leadsto$ small cover $M_{\mathbb{R}}(P, \Lambda)$.

Replace T^{n} by \mathbb{Z}_{2}^{n} in Canonical Construction: real characteristic pair $(P, \Lambda) \leadsto$ small cover $M_{\mathbb{R}}(P, \Lambda)$.

- $H^{*}\left(M_{\mathbb{R}}(P, \Lambda) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[v_{1}, \ldots, v_{m}\right] /(\mathcal{I}+\mathcal{J})$.
- $w\left(M_{\mathbb{R}}(P, \Lambda)\right)=\prod_{i=1}^{m}\left(1+v_{i}\right) ; p\left(M_{\mathbb{R}}(P, \Lambda)\right)=1$.

Replace T^{n} by \mathbb{Z}_{2}^{n} in Canonical Construction: real characteristic pair $(P, \Lambda) \leadsto$ small cover $M_{\mathbb{R}}(P, \Lambda)$.

- $H^{*}\left(M_{\mathbb{R}}(P, \Lambda) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[v_{1}, \ldots, v_{m}\right] /(\mathcal{I}+\mathcal{J})$.
- $w\left(M_{\mathbb{R}}(P, \Lambda)\right)=\prod_{i=1}^{m}\left(1+v_{i}\right) ; p\left(M_{\mathbb{R}}(P, \Lambda)\right)=1$.
- Real analogue: different results via simpler arguments.

Replace T^{n} by \mathbb{Z}_{2}^{n} in Canonical Construction: real characteristic pair $(P, \Lambda) \leadsto$ small cover $M_{\mathbb{R}}(P, \Lambda)$.

- $H^{*}\left(M_{\mathbb{R}}(P, \Lambda) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[v_{1}, \ldots, v_{m}\right] /(\mathcal{I}+\mathcal{J})$.
- $w\left(M_{\mathbb{R}}(P, \Lambda)\right)=\prod_{i=1}^{m}\left(1+v_{i}\right) ; p\left(M_{\mathbb{R}}(P, \Lambda)\right)=1$.
- Real analogue: different results via simpler arguments.
- Partial results in certain cases can be found in the work of Choi-Masuda-Oum, Dsouza-Uma and Huang.
- 2-dimensional string small covers are just equivariant connected sum of $\mathbb{R} P^{1} \times \mathbb{R} P^{1}$.
- 2-dimensional string small covers are just equivariant connected sum of $\mathbb{R} P^{1} \times \mathbb{R} P^{1}$.
- Every 3-dimensional simple polytope can be realized as the orbit polytope of a string small cover. In particular, every string small cover over prism is of bundle type.
- 2-dimensional string small covers are just equivariant connected sum of $\mathbb{R} P^{1} \times \mathbb{R} P^{1}$.
- Every 3-dimensional simple polytope can be realized as the orbit polytope of a string small cover. In particular, every string small cover over prism is of bundle type.
- $C_{2}\left(m_{1}\right) \times C_{2}\left(m_{2}\right)$ can be realized as the orbit polytope of a string small cover $\Leftrightarrow m_{1} m_{2} \equiv 0(\bmod 2)$.
- 2-dimensional string small covers are just equivariant connected sum of $\mathbb{R} P^{1} \times \mathbb{R} P^{1}$.
- Every 3-dimensional simple polytope can be realized as the orbit polytope of a string small cover. In particular, every string small cover over prism is of bundle type.
- $C_{2}\left(m_{1}\right) \times C_{2}\left(m_{2}\right)$ can be realized as the orbit polytope of a string small cover $\Leftrightarrow m_{1} m_{2} \equiv 0(\bmod 2)$.
- $\prod_{i=1}^{k} \Delta^{n_{i}}$ with $n_{i} \geq 2$ can be realized as the orbit polytope of a string small cover $\Leftrightarrow n_{i} \equiv 1(\bmod 2)$ for $1 \leq i \leq k$ and $\exists i_{0}$ s.t. $n_{i_{0}} \equiv 3(\bmod 4)$.

Can we find some necessary and / or sufficient conditions in combinatorial language for orbit polytopes of string quasitoric manifolds ?

Can we find some necessary and/or sufficient conditions in combinatorial language for orbit polytopes of string quasitoric manifolds?

In particular, if P^{n} can be realized as the orbit polytope of a string quasitoric manifold, is there an upper bound for the chromatic number $\gamma\left(P^{n}\right)$?

- (Buchstaber-Panov-Ray 2007) Every element in Ω_{*}^{U} has a quasitoric representative;
- (Buchstaber-Panov-Ray 2007) Every element in Ω_{*}^{U} has a quasitoric representative;
- (Limonchenko-Lü-Panov 2018) Polynomial generators of $\Omega_{*}^{S U} \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ can be chosen as Calabi-Yau hypersurfaces in certain quasitoric manifolds.
- (Buchstaber-Panov-Ray 2007) Every element in Ω_{*}^{U} has a quasitoric representative;
- (Limonchenko-Lü-Panov 2018) Polynomial generators of $\Omega_{*}^{S U} \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ can be chosen as Calabi-Yau hypersurfaces in certain quasitoric manifolds.

Search for nontrivial string manifolds with the help of $M(P, \Lambda)$ String bordism \& Stolz Conjecture

