A Chevalley formula for the Factorial $G P$ functions

Sugimoto Shogo

Waseda University
March 23rd, 2022

Contents

(1) Definition of the Factorial $G P$ Functions
(2) Factorial $G P$ functions and orthogonal Grassmannian variety
(3) Chevalley formula of Factorial GP functions

Factorial $G P$ Functions

Factorial $G P$ functions are special functions that represent the Schubert classes in torus equivariant K theory on maximal orthogonal Grassmanninan

Strict Partitions and Shifted Young Diagrams

Definition Strict Partition

$\lambda=\left(\lambda_{1}, \cdots, \lambda_{\ell}\right)$ is strict partition:strictly decreasing sequence of positive integers.
ℓ is length of λ.
\emptyset is a strict partition of length 0 .
$\mathcal{S P}{ }_{n}$: a set of strict partittions of length $\leq n$.
$\mathcal{S P}(n)$:a set of strict partitions such that the first entry $\leq n$.

example

$(4,2),(5,3,2),(5,4,3),(6) \in \mathcal{S P}_{3}$.

Definition Shifted Young Diagram

Let λ be a strict partition.
$\mathbb{D}(\lambda)=\{(i, j) \in \mathbb{Z} \times \mathbb{Z} \mid i \leq j \leq \lambda+i-1,1 \leq \ell(\lambda)\}$: shifted Young diagram of λ

Example

$(5,3,2) \Longrightarrow \square^{\square}$

We identify a strict partition and its shifted Young diagram.

Definithion Inclusion of strict partitions

Let be strict partitons λ, μ.

Example

$$
(2,1) \subset(3,2,1),(1) \subset(2),(3,1) \subset(3,2), \cdots
$$

Factorial GP functions (tableaux representation)

Factorial GP functons (Ikeda-Naruse)

$\lambda \in \mathcal{S P}{ }_{n}$

$$
G P_{\lambda}\left(x_{1}, \cdots, x_{n} \mid b\right)=\sum_{T \in \mathcal{T}(\lambda)} \beta^{|T|-|\lambda|}(x \mid b)^{T}
$$

Set Valued Tableaux ($\mathcal{T}(\lambda)$)

Definition (Set-Valued Tableaux)

$\lambda \in \mathcal{S P}_{n}$. $\mathcal{A}:=\left\{1^{\prime}<1<2^{\prime}<2<\cdots<n^{\prime}<n\right\}$: orderd alphabet. A set-valued tableau T of shape λ is a assignment $T: \mathbb{D}(\lambda) \rightarrow 2^{\mathcal{A}}$
(1) $\max T(i, j) \leq \min T(i, j+1), \max T(i, j) \leq \min T(i+1, j)$,
(2) Each a (non prime number) appeaers at most once in each column,
(3) Each a^{\prime} (prime number) appears at most once in each row,
(4) If i is odd number, then $T(i, i) \subset\left\{1,2^{\prime}, 3,4^{\prime} \cdots\right\}$ and if i is even number $T(i, i) \subset\left\{1^{\prime}, 2,3^{\prime}, 4, \cdots\right\}$.

We denote by $\mathcal{T}(\lambda)$ the set of all set-valued tableaux of shape λ.

Example

If $n=2, \lambda=(2,1)$, then $\mathcal{T}(\lambda)$ consist of the following three tableaux.

These tableaux are not elements of $\mathcal{T}(\lambda)$.

$(x \mid b)^{T}$

$$
x \oplus y=x+y+\beta x y, \quad x \ominus y=\frac{x-y}{1+\beta y} .
$$

For each $(i, j) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ and $a \in \mathcal{A}$, we define

$$
w(i, j ; a):= \begin{cases}x_{a} \oplus b_{-i+j+1} & a=1,2, \cdots, n \\ x_{|a|} \ominus b_{-i+j+1} & a=1^{\prime}, 2^{\prime}, \cdots n^{\prime}\end{cases}
$$

For $T \in \mathcal{T}(\lambda)$, we define

$$
(x \mid b)^{T}=\prod_{(i, j) \in \lambda, a \in T(i, j)} w(i, j ; a)
$$

Factorial GP functions (tableaux representation)

Factorial GP function(Ikeda-Naruse)

For $\lambda \in \mathcal{S P}{ }_{n}$

$$
G P_{\lambda}\left(x_{1}, \cdots, x_{n} \mid b_{1}, b_{2}, \cdots\right)=\sum_{T \in \mathcal{T}(\lambda)} \beta^{|T|-|\lambda|}(x \mid b)^{T}
$$

Example

Let $n=2$ and $\lambda=(2,1)$, then $\mathcal{T}(\lambda)=\left\{T_{1}, T_{2}, T_{3}\right\}$.

$$
T_{1}=\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 2
\end{array} \quad T_{2}=\begin{array}{|l|l|}
\hline 1 & 2^{\prime} \\
\hline & 2 \\
\hline
\end{array} \quad T_{3}=\begin{array}{|l|l|}
\hline 1 & 1,2 \\
\hline 2 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& (x \mid b)^{T_{1}}=\left(x_{1} \oplus b_{1}\right)\left(x_{1} \oplus b_{2}\right)\left(x_{2} \oplus b_{1}\right) \\
& (x \mid b)^{T_{2}}=\left(x_{1} \oplus b_{1}\right)\left(x_{2} \ominus b_{2}\right)\left(x_{2} \oplus b_{1}\right) \\
& (x \mid b)^{T_{3}}=\left(x_{1} \oplus b_{1}\right)\left(x_{1} \oplus b_{2}\right)\left(x_{2} \ominus b_{2}\right)\left(x_{2} \oplus b_{1}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
G P_{\boxplus}\left(x_{1}, x_{2} \mid b_{1}, b_{2}, \cdots\right)= & \sum_{T \in \mathcal{T}(2,1)} \beta^{|T|-|(2,1)|}(x \mid b)^{T} \\
= & (x \mid b)^{T_{1}}+(x \mid b)^{T_{2}}+\beta(x \mid b)^{T_{3}} \\
= & \left(x_{1} \oplus b_{1}\right)\left(x_{1} \oplus b_{2}\right)\left(x_{2} \oplus b_{1}\right)+\left(x_{1} \oplus b_{1}\right)\left(x_{2} \ominus b_{2}\right)\left(x_{2} \oplus b_{1}\right) \\
& +\beta\left(x_{1} \oplus b_{1}\right)\left(x_{1} \oplus b_{2}\right)\left(x_{2} \ominus b_{2}\right)\left(x_{2} \oplus b_{1}\right) \\
= & \left(x_{1} \oplus b_{1}\right)\left(x_{2} \oplus b_{1}\right)\left\{\left(x_{1} \oplus b_{2}\right)+\left(x_{2} \ominus b_{2}\right)+\beta\left(x_{1} \oplus b_{2}\right)\left(x_{2} \ominus b_{2}\right)\right\} \\
= & \left(x_{1} \oplus b_{1}\right)\left(x_{2} \oplus b_{1}\right)\left(\left(x_{1} \oplus b_{2}\right) \oplus\left(x_{2} \ominus b_{2}\right)\right) \\
= & \left(x_{1} \oplus b_{1}\right)\left(x_{2} \oplus b_{1}\right)\left(x_{1} \oplus x_{2}\right)
\end{aligned}
$$

Fctorial GP functions (Hall-Littlewood-type formula)

$$
x \oplus y=x+y+\beta x y, \quad x \ominus y=\frac{x-y}{1+\beta y} .
$$

For $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\ell}\right) \in \mathcal{S P}{ }_{n}$, we set

$$
[x \mid b]^{\lambda}=\prod_{j=1}^{\lambda_{1}}\left(x_{1} \oplus b_{j}\right) \prod_{j=1}^{\lambda_{2}}\left(x_{2} \oplus b_{j}\right) \cdots \prod_{j=1}^{\lambda_{\ell}}\left(x_{\ell} \oplus b_{j}\right)
$$

Factorial GP function(Ikeda-Naruse)

$$
G P_{\lambda}\left(x_{1}, \cdots, x_{n} \mid b_{1}, b_{2}, \cdots\right)=\frac{1}{(n-\ell)!} \sum_{\sigma \in S_{n}} \sigma\left[[x \mid b]^{\lambda} \prod_{1 \leq i<j \leq n, i \leq \ell} \frac{x_{i} \oplus x_{j}}{x_{i} \ominus x_{j}}\right]
$$

where $\sigma \in S_{n}$ acts on the variables x_{1}, \cdots, x_{n}.

Example

$$
\begin{aligned}
G P_{\oplus}\left(x_{1}, x_{2} \mid b_{1}, b_{2}, \cdots\right)= & \frac{1}{(2-2)!} \sum_{\sigma \in S_{2}} \sigma\left[\left(x_{1} \oplus b_{1}\right)\left(x_{1} \oplus b_{2}\right)\left(x_{2} \oplus b_{1}\right) \frac{x_{1} \oplus x_{2}}{x_{1} \ominus x_{2}}\right] \\
= & \left(x_{1} \oplus b_{1}\right)\left(x_{1} \oplus b_{2}\right)\left(x_{2} \oplus b_{1}\right) \frac{x_{1} \oplus x_{2}}{x_{1} \ominus x_{2}} \\
& +\left(x_{2} \oplus b_{1}\right)\left(x_{2} \oplus b_{2}\right)\left(x_{1} \oplus b_{1}\right) \frac{x_{2} \oplus x_{1}}{x_{2} \ominus x_{1}} \\
= & \left(x_{1} \oplus b_{1}\right)\left(x_{2} \oplus b_{1}\right)\left(x_{1} \oplus x_{2}\right)\left\{\frac{\left(x_{1} \oplus b_{2}\right) \ominus\left(x_{2} \oplus b_{2}\right)}{x_{1} \ominus x_{2}}\right\} \\
= & \left(x_{1} \oplus b_{1}\right)\left(x_{2} \oplus b_{1}\right)\left(x_{1} \oplus x_{2}\right)
\end{aligned}
$$

Properties of Factorial GP Functions

- $G P_{\lambda}\left(x_{1}, \cdots, x_{n} \mid b\right)$ is a symmetric polynomial x_{1}, \cdots, x_{n}.
- The coefficients of $G P_{\lambda}\left(x_{1}, \cdots, x_{n} \mid b\right)$ as a polynomial are non negative integers.
- $G P_{\lambda}\left(x_{1}, \cdots, x_{n} \mid b\right)$ is a homogeneous polynomial of degree $|\lambda|$. $\left(\operatorname{deg}\left(x_{i}\right)=\operatorname{deg}\left(b_{i}\right)=1, \operatorname{deg}(\beta)=-1\right)$

Contens

Definition of the Factorial $G P$ Functions
(2) Factorial $G P$ functions and orthogonal Grassmannian variety
(3) Chevalley formula of Factorial $G P$ functions

Maximal orthogonal Grassmannian variety and Schubert variety

$\left\{e_{n+1}^{*}, \cdots, e_{1}^{*}, e_{1}, \cdots, e_{n+1}\right\}$: orderd basis of $\mathbb{C}^{2 n+2}$
$(-,-)$: symmetric bilinear form which satisfies

$$
\left(e_{i}, e_{j}\right)=\left(e_{i}^{*}, e_{j}^{*}\right)=0,\left(e_{i}^{*}, e_{j}\right)=\delta_{i, j}
$$

$X=O G(n+1,2 n+2)=\left\{V \subset \mathbb{C}^{2 n+2} \mid \operatorname{dim}(V)=n+1,(V, V)=0\right\}$: maximal orthogonal Grassmannian variety
$F_{i}=\left\langle e_{n+1}^{*}, \cdots, e_{n+2-i}^{*}\right\rangle$
$F_{\bullet}: 0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{n+1} \subset \mathbb{C}^{2 n+2} \operatorname{dim}\left(F_{i}\right)=i,\left(F_{i}, F_{i}\right)=0$ (called isotropic flag).
$\Omega_{\lambda}\left(F_{\bullet}\right)=\left\{V \in X \mid \operatorname{dim}\left(V \cap F_{n+1-\lambda_{i}}\right) \geq i, 1 \leq i \leq \ell(\lambda)\right\}:$ Schubert variety

Torus Equivariant K-theory of Maximal Orthogonal Grassmannian Variety

$K_{T}(X)$:Grothendieck group of the abilian category of torus equivariant coerent sheaves on X $\mathcal{O}_{\Omega_{\lambda}}$: structur sheaf of Ω_{λ}
$\mathcal{O}_{\lambda}=\left[\mathcal{O}_{\Omega_{\lambda}}\right] \in K_{T}(X)$: Schubert class. $\left\{\mathcal{O}_{\lambda} \mid \lambda \in \mathcal{S P}\right\}$ form a basis in $K_{T}(X)$ as $K_{T}(p t)$ module.

The Fundamental Problem of Schubert Calculus

$$
\mathcal{O}_{\lambda} \cdot \mathcal{O}_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} \mathcal{O}_{\nu}
$$

Compute $c_{\lambda, \mu}^{\nu}$.

Schubert classes and Factorial GP functions

Theorem(Ikeda-Naruse)

There exsists a surjective homomorphism.

$$
\begin{aligned}
\pi_{n}: R(T) \otimes_{\mathbb{Z}[\beta]} G \Gamma_{n} & \longrightarrow K_{T}(X) \\
G D_{\lambda}\left(x \mid 1-e^{t_{1}}, \cdots, 1-e^{t_{n+1}}, 0, \cdots\right) & \mapsto \begin{cases}\mathcal{O}_{\lambda} & \lambda \in \mathcal{S P}(n) \\
0 & \lambda \notin \mathcal{S P}(n)\end{cases}
\end{aligned}
$$

Where $G D_{\lambda}(x \mid b)= \begin{cases}G P_{\lambda}\left(x_{1}, \cdots, x_{n} \mid b_{1}, b_{2}, \cdots\right) & \text { n: even number } \\ G P_{\lambda}\left(x_{1}, \cdots, x_{n}, 0 \mid b_{1}, b_{2}, \cdots\right) & \text { n: odd number }\end{cases}$
$\mathcal{R}(T)=\mathbb{Z}\left[e^{ \pm t_{1}}, \cdots, e^{ \pm t_{n+1}}\right], G \Gamma_{n}=\mathbb{Z}[\beta]\left[G P_{\lambda}\left(x_{1}, \cdots, x_{n}\right) \mid \lambda \in \mathcal{S} \mathcal{P}_{n}\right]$.

Structure constants of non factorial $G P$ functions, factorial Schur P functions and Schur P Functions

$$
X=O G(n+1,2 n+2)=\left\{V \subset \mathbb{C}^{2 n+2} \mid \operatorname{dim}(V)=n+1,(V, V)=0\right\}
$$

$$
\begin{array}{ccc}
G P_{\lambda}(x \mid b) \xrightarrow{\forall b_{i}=0} G P_{\lambda}(x) & K_{T}(X) \xrightarrow{\forall b_{i}=0} K(X) \\
\beta=0 \mid & \beta=0 \mid & \beta=0 \mid \\
P_{\lambda}(x \mid b) \xrightarrow{\forall b_{i}=0} P_{\lambda}(x) & H_{T}^{*}(X) \xrightarrow{\forall b_{i}=0} H^{*}(X)
\end{array}
$$

Schur P functions \Longrightarrow Littlewood-Richardson rule(Stembrige, 1989) Factorial P functions \Longrightarrow Pieri rule(Cho-Ikeda, 2011)
Non factorial GP functions \Longrightarrow Littlewood-Richardson rule(Clifford-Thomas-Yong, 2014)

Contens

Definition of the Factorial $G P$ Functions
(2) Factorial $G P$ functions and orthogonal Grassmannian variety
(3) Chevalley formula of Factorial $G P$ functions

$$
G P_{\lambda}(x \mid b) \cdot G P_{\mu}(x \mid b)=\sum_{\nu} c_{\lambda, \mu}^{\nu} G P_{\nu}(x \mid b)
$$

We want to calculate the cofficents $c_{\lambda, \mu}^{\nu}$.
The case of $\mu=(1,0,0, \cdots)=\square$
\Longrightarrow Chevalley formula (2018, Buch-Chaput-Mihalcea-Perrin)
The case of $\mu=\left(\mu_{1}, 0,0, \cdots\right)$
\Longrightarrow Pieri formula is an open problem.

Definithion Rook Strip

For $\lambda \subset \mu\left(\lambda_{i} \leq \mu_{i}, \forall i\right)$
μ / λ :collection of boxes that belong to the diagram of μ but not to that of λ μ / λ is rook strip. $\stackrel{\text { def }}{\Longleftrightarrow} \mu / \lambda$ has at most one box in all rows and all columns.

Example

$\lambda=(2), \mu / \lambda$:rook strip $\Longrightarrow \mu=(2),(2,1),(3),(3,1)$

Example

$\lambda=(4,1), \mu / \lambda$:rook strip

example

$\lambda=(4,2), \mu / \lambda$:rook strip $\Longrightarrow \mu=(4,2),(5,2),(4,3),(4,2,1),(5,3),(5,2,1),(4,3,1),(5,3,1)$

Chevalley Formula (Buch-Chaput-Mihalcea-Perrin)

n :even number, $\lambda \in \mathcal{S} \mathcal{P}_{n}, \ell$: length of $\lambda, r . s$: rook strip.

$$
\begin{gathered}
G P_{\lambda}(x \mid b) \cdot G P_{\square}(x \mid b)=\beta^{-1}\left\{\Pi\left(b_{\lambda}\right)-1\right\} G P_{\lambda}(x \mid b)+\Pi\left(b_{\lambda}\right) \sum_{\substack{\mu \in \mathcal{S} \mathcal{P}_{n} \\
\mu / \lambda: r . s \\
\mu \neq \lambda}} \beta^{|\mu / \lambda|-1} G P_{\mu}(x \mid b) \\
\left(=\underset{\substack{\mu \in \mathcal{S P} \mathcal{P}_{n} \\
\mu / \lambda: r . s}}{ } \beta^{|\mu / \lambda|-1} G P_{\mu}(x \mid b)-\beta^{-1} G P_{\lambda}(x \mid b)\right) \\
\Pi\left(b_{\lambda}\right)= \begin{cases}\prod_{i=1}^{\ell}\left(1+\beta b_{\lambda_{i}+1}\right)^{-1} & \ell: \text { even } \\
\left(1+\beta b_{1}\right)^{-1} \prod_{i=1}^{\ell}\left(1+\beta b_{\lambda_{i}+1}\right)^{-1} & \ell: \text { odd }\end{cases}
\end{gathered}
$$

Example

$\lambda=(2), \mu / \lambda$:rook strip $\Longrightarrow \mu=(2),(2,1),(3),(3,1)$

$$
\begin{aligned}
G P_{\square}(x \mid b) \cdot G P_{\square}(x \mid b)= & \beta^{-1}\left\{\Pi\left(b_{\square}\right)-1\right\} G P_{\square}(x \mid b) \\
& +\Pi\left(b_{\square}\right)\left\{G P_{ष}(x \mid b)+G P_{\square}(x \mid b)+\beta G P_{ष}(x \mid b)\right\}
\end{aligned}
$$

Where

$$
\Pi\left(b_{\square}\right)=\left(1+\beta b_{3}\right)^{-1}\left(1+\beta b_{1}\right)^{-1} .
$$

Example

$$
\lambda=(4,1), \mu / \lambda: \text { rook strip } \mu=(4,1),(4,2),(5,1),(5,2)
$$

$$
\begin{aligned}
G P_{\mathrm{母}}(x \mid b) \cdot G P_{\square}(x \mid b)= & \beta^{-1}\left\{\Pi\left(b_{\square}\right)-1\right\} G P_{\square}(x \mid b) \\
& +\Pi\left(b_{\square}\right)\left\{G P_{\square}(x \mid b)+G P_{\square}(x \mid b)+\beta G P_{\square}(x \mid b)\right\}
\end{aligned}
$$

Where

$$
\Pi\left(b_{\text {qu }}\right)=\left(1+\beta b_{5}\right)^{-1}\left(1+\beta b_{2}\right)^{-1} .
$$

Example

$\lambda=(4,2), \mu / \lambda$: rook strip
$\Longrightarrow \mu=(4,2),(5,2),(4,3),(4,2,1),(5,3),(5,2,1),(4,3,1),(5,3,1)$
If $x=\left(x_{1}, x_{2}\right)$, then

$$
\begin{aligned}
& G P_{\square}(x \mid b) \cdot G P_{\square}(x \mid b) \\
& =\beta^{-1}\left\{\Pi\left(b_{\Psi}\right)-1\right\} G P_{\Psi}(x \mid b)
\end{aligned}
$$

Where

$$
\Pi\left(b_{\Psi}\right)=\left(1+\beta b_{5}\right)^{-1}\left(1+\beta b_{3}\right)^{-1}
$$

Proof

Define coefficients $c_{\lambda}^{\mu}=c_{\lambda}^{\mu}(\beta, b)$

$$
\frac{G P_{\lambda}(x \mid b)\left(1+\beta G P_{\square}(x \mid b)\right)}{\Pi\left(b_{\lambda}\right)}=\sum_{\mu \in \mathcal{S} \mathcal{P}_{n}} \beta^{|\mu|-|\lambda|} c_{\lambda}^{\mu} G P_{\mu}(x \mid b)
$$

$1 c_{\lambda}^{\mu}$ is a rational functions of $\beta b_{1}, \beta b_{2}, \cdots$.
$2 c_{\lambda}^{\mu}$ is a polynomial $\beta, b_{1}, b_{2}, \cdots$.
$3 \operatorname{deg}_{\beta} c_{\lambda}^{\mu} \leq 0$.

Proof

By claim 1,2, and 3, c_{λ}^{μ} is an integer. $\Longrightarrow c_{\lambda}^{\mu}(\beta, b)=c_{\lambda}^{\mu}(\beta, 0)$ Use the Chevalley formula of "NON" factorial GP functions (Buch-Ravikumar 2014, Clifford-Thomas-Yong, 2014).

Thank you for your time and attention.

