Gale dual of GKM graph

Shintarô Kuroki
 (joint work w/ Tomoo Matsumura and Ryoto Yukitou)

Okayama University of Science

May 15th 2020
Workshop on Torus Actions in Topology
Fields Institute (on zoom)

§1 Gale dual (configuration)

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{R}^{n}$ such that $\left\langle a_{1}, \ldots, a_{m}\right\rangle=\mathbb{R}^{n}$.

§1 Gale dual (configuration)

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{R}^{n}$ such that $\left\langle a_{1}, \ldots, a_{m}\right\rangle=\mathbb{R}^{n}$.
Then we have the $(n \times m)$-matrix

$$
A=\left[a_{1} \cdots a_{m}\right]: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

§1 Gale dual (configuration)

Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{R}^{n}$ such that $\left\langle a_{1}, \ldots, a_{m}\right\rangle=\mathbb{R}^{n}$.
Then we have the $(n \times m)$-matrix

$$
A=\left[a_{1} \cdots a_{m}\right]: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

Definition
Gale dual (configuration) of \mathcal{A} is the following configuration

$$
\mathcal{B}=\left\{b_{1}, \ldots, b_{m}\right\} \subset \mathbb{R}^{m-n}
$$

such that the following sequence is exact:

$$
0 \longrightarrow \mathbb{R}^{m-n} \xrightarrow{B^{T}} \mathbb{R}^{m} \xrightarrow{A} \mathbb{R}^{n} \longrightarrow 0
$$

where $B=\left[b_{1} \cdots b_{m}\right]$ is the $(m-n) \times m$ matrix obtained by \mathcal{B}.

Example of a Gale dual

Let $\mathcal{A}:=\left\{e_{1}, e_{2}, e_{3},-e_{1}-e_{2}-e_{3}\right\} \subset \mathbb{R}^{3}$.

Example of a Gale dual

Let $\mathcal{A}:=\left\{e_{1}, e_{2}, e_{3},-e_{1}-e_{2}-e_{3}\right\} \subset \mathbb{R}^{3}$. Then

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right]: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

Example of a Gale dual

Let $\mathcal{A}:=\left\{e_{1}, e_{2}, e_{3},-e_{1}-e_{2}-e_{3}\right\} \subset \mathbb{R}^{3}$. Then

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right]: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

In this case, $B^{T}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ gives the following exact sequence:

$$
0 \longrightarrow \mathbb{R} \xrightarrow{B^{T}} \mathbb{R}^{4} \xrightarrow{A} \mathbb{R}^{3} \longrightarrow 0
$$

Example of a Gale dual

Let $\mathcal{A}:=\left\{e_{1}, e_{2}, e_{3},-e_{1}-e_{2}-e_{3}\right\} \subset \mathbb{R}^{3}$. Then

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right]: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

In this case, $B^{T}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ gives the following exact sequence:

$$
0 \longrightarrow \mathbb{R} \xrightarrow{B^{T}} \mathbb{R}^{4} \xrightarrow{A} \mathbb{R}^{3} \longrightarrow 0
$$

So a Gae dual of \mathcal{A} can be taken as

$$
\mathcal{B}=\{1,1,1,1\} \subset \mathbb{R}^{4-3}=\mathbb{R}
$$

Example of a Gale dual

Let $\mathcal{A}:=\left\{e_{1}, e_{2}, e_{3},-e_{1}-e_{2}-e_{3}\right\} \subset \mathbb{R}^{3}$. Then

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right]: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

In this case, $B^{T}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ gives the following exact sequence:

$$
0 \longrightarrow \mathbb{R} \xrightarrow{B^{T}} \mathbb{R}^{4} \xrightarrow{A} \mathbb{R}^{3} \longrightarrow 0
$$

So a Gae dual of \mathcal{A} can be taken as

$$
\mathcal{B}=\{1,1,1,1\} \subset \mathbb{R}^{4-3}=\mathbb{R}
$$

Remark

- \mathcal{B} is unique up to $G L_{m-n}(\mathbb{R})$-action and an order of vectors;

Example of a Gale dual

Let $\mathcal{A}:=\left\{e_{1}, e_{2}, e_{3},-e_{1}-e_{2}-e_{3}\right\} \subset \mathbb{R}^{3}$. Then

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right]: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

In this case, $B^{T}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ gives the following exact sequence:

$$
0 \longrightarrow \mathbb{R} \xrightarrow{B^{T}} \mathbb{R}^{4} \xrightarrow{A} \mathbb{R}^{3} \longrightarrow 0
$$

So a Gae dual of \mathcal{A} can be taken as

$$
\mathcal{B}=\{1,1,1,1\} \subset \mathbb{R}^{4-3}=\mathbb{R}
$$

Remark

- \mathcal{B} is unique up to $G L_{m-n}(\mathbb{R})$-action and an order of vectors;
- Gale dual can be also defined for \mathbb{Z}^{n} (Rossi-Teraccini).

§2 (Abstract) GKM graph

Let $\Gamma=(V, E)$ be an m-valent graph, i.e., $\# E_{p}=m$ for all $p \in V$.

Figure: Two 3-valent graphs and one 4 -valent graph.

§2 (Abstract) GKM graph

Let $\Gamma=(V, E)$ be an m-valent graph, i.e., $\# E_{p}=m$ for all $p \in V$.

Figure: Two 3-valent graphs and one 4 -valent graph.

Definition
A GKM graph is a labelled graph (Γ, α, ∇)

§2 (Abstract) GKM graph

Let $\Gamma=(V, E)$ be an m-valent graph, i.e., $\# E_{p}=m$ for all $p \in V$.

Figure: Two 3-valent graphs and one 4 -valent graph.

Definition

A GKM graph is a labelled graph (Γ, α, ∇) whose label $\alpha: E \rightarrow H^{2}\left(B T^{n}\right) \simeq \mathbb{Z}^{n}$ (for $1 \leq n \leq m$) satisfies the following conditions:

Axial function α

$\alpha: E \rightarrow H^{2}\left(B T^{n}\right) \simeq \mathbb{Z}^{n}$ (called axial function) satisfies the following three conditions:
(1) $\alpha(p q)=-\alpha(q p)$

Axial function α

$\alpha: E \rightarrow H^{2}\left(B T^{n}\right) \simeq \mathbb{Z}^{n}$ (called axial function) satisfies the following three conditions:
(1) $\alpha(p q)=-\alpha(q p)$

(2) $\left\{\alpha(e) \mid e \in E_{p}\right\}$ spans \mathbb{Z}^{n} (effectiveness) and

Axial function α

$\alpha: E \rightarrow H^{2}\left(B T^{n}\right) \simeq \mathbb{Z}^{n}$ (called axial function) satisfies the following three conditions:
(1) $\alpha(p q)=-\alpha(q p)$

(2) $\left\{\alpha(e) \mid e \in E_{p}\right\}$ spans \mathbb{Z}^{n} (effectiveness) and pairwise linearly independent

where $H^{2}\left(B T^{3}\right)=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ (left) and $H^{2}\left(B T^{2}\right)=\left\langle x_{1}, x_{2}\right\rangle_{(\text {right }}$),

Congruence relation and connection ∇

(3) $\forall p q \in E, \exists$ a bijection $\nabla_{p q}: E_{p} \rightarrow E_{q}$

Congruence relation and connection ∇

(3) $\forall p q \in E, \exists$ a bijection $\nabla_{p q}: E_{p} \rightarrow E_{q}$ which satisfies

$$
\forall e \in E_{p}, \exists C_{p q}(e) \in \mathbb{Z} ; \alpha\left(\nabla_{p q}(e)\right)-\alpha(e)=C_{p q}(e) \alpha(p q)
$$

(congruence relation).

Congruence relation and connection ∇

(3) $\forall p q \in E, \exists$ a bijection $\nabla_{p q}: E_{p} \rightarrow E_{q}$ which satisfies

$$
\forall e \in E_{p}, \exists C_{p q}(e) \in \mathbb{Z} ; \alpha\left(\nabla_{p q}(e)\right)-\alpha(e)=C_{p q}(e) \alpha(p q)
$$

(congruence relation). $\nabla=\left\{\nabla_{e} \mid e \in E\right\}$ is called a connection

Congruence relation and connection ∇

(3) $\forall p q \in E, \exists$ a bijection $\nabla_{p q}: E_{p} \rightarrow E_{q}$ which satisfies

$$
\forall e \in E_{p}, \exists C_{p q}(e) \in \mathbb{Z} ; \alpha\left(\nabla_{p q}(e)\right)-\alpha(e)=C_{p q}(e) \alpha(p q)
$$

(congruence relation). $\nabla=\left\{\nabla_{e} \mid e \in E\right\}$ is called a connection
Example

$\S 3$ Gale dual of a GKM graph (Γ, α, ∇)

IDEA

The axial functions on each vertices may be regarded as a vector configuration (in \mathbb{Z}^{n}).

$$
\alpha\left(E_{p}\right)=\left\{\alpha\left(e_{1}\right), \ldots, \alpha\left(e_{m}\right)\right\} \subset H^{2}\left(B T^{n}\right) \simeq \mathbb{Z}^{n}
$$

$\S 3$ Gale dual of a GKM graph (Γ, α, ∇)

IDEA

The axial functions on each vertices may be regarded as a vector configuration (in \mathbb{Z}^{n}).

$$
\alpha\left(E_{p}\right)=\left\{\alpha\left(e_{1}\right), \ldots, \alpha\left(e_{m}\right)\right\} \subset H^{2}\left(B T^{n}\right) \simeq \mathbb{Z}^{n}
$$

Problem
Can we say something about the Gale dual of axial functions on each vertex?

Preparation for definition

Let (Γ, α, ∇) be an m-valent GKM graph.

Preparation for definition

Let (Γ, α, ∇) be an m-valent GKM graph.
Let $E_{p}:=\left\{e_{1}, \ldots, e_{m}\right\}$ for $p \in V$.

Preparation for definition

Let (Γ, α, ∇) be an m-valent GKM graph.
Let $E_{p}:=\left\{e_{1}, \ldots, e_{m}\right\}$ for $p \in V$.
Define the free abelian group generated by E_{p} by

$$
\mathbb{Z} E_{p}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{m}\left(\simeq \mathbb{Z}^{m}\right)
$$

Preparation for definition

Let (Γ, α, ∇) be an m-valent GKM graph.
Let $E_{p}:=\left\{e_{1}, \ldots, e_{m}\right\}$ for $p \in V$.
Define the free abelian group generated by E_{p} by

$$
\mathbb{Z} E_{p}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{m}\left(\simeq \mathbb{Z}^{m}\right)
$$

Then, the axial function defines the following (surjective) homomorphism:

$$
\mathbb{Z} E_{p}\left(\simeq \mathbb{Z}^{m}\right) \xrightarrow{\alpha_{p}} H^{2}\left(B T^{n}\right)\left(\simeq \mathbb{Z}^{n}\right)
$$

induced from

$$
\alpha_{p}: e_{i} \mapsto \alpha\left(e_{i}\right), \quad \alpha_{p}=\left[\begin{array}{lll}
\alpha\left(e_{1}\right) & \cdots & \alpha\left(e_{m}\right)
\end{array}\right] .
$$

Definition

Let ρ_{p} be a Gale dual of α_{p}, i.e.,

$$
\rho_{p}=\left\{\rho_{p}\left(e_{1}\right), \ldots, \rho_{p}\left(e_{m}\right)\right\} \subset \mathbb{Z}^{m-n}
$$

which satisfies that the following sequence is exact:

$$
0 \longrightarrow \mathbb{Z}^{m-n} \xrightarrow{\rho_{\rho}^{T}} \mathbb{Z} E_{p} \xrightarrow{\alpha_{p}} H^{2}\left(B T^{n}\right) \longrightarrow 0
$$

where $\rho_{p}=\left[\begin{array}{lll}\rho_{p}\left(e_{1}\right) & \cdots & \rho\left(e_{m}\right)\end{array}\right]$.

Definition

Let ρ_{p} be a Gale dual of α_{p}, i.e.,

$$
\rho_{p}=\left\{\rho_{p}\left(e_{1}\right), \ldots, \rho_{p}\left(e_{m}\right)\right\} \subset \mathbb{Z}^{m-n}
$$

which satisfies that the following sequence is exact:

$$
0 \longrightarrow \mathbb{Z}^{m-n} \xrightarrow{\rho_{\rho}^{T}} \mathbb{Z} E_{p} \xrightarrow{\alpha_{p}} H^{2}\left(B T^{n}\right) \longrightarrow 0
$$

where $\rho_{p}=\left[\begin{array}{lll}\rho_{p}\left(e_{1}\right) & \cdots & \rho\left(e_{m}\right)\end{array}\right]$.
Then we can define $\rho: E \rightarrow \mathbb{Z}^{m-n}$ by $\rho(e):=\rho_{p}(e)$ for $e \in E_{p}$.

Definition

Let ρ_{p} be a Gale dual of α_{p}, i.e.,

$$
\rho_{p}=\left\{\rho_{p}\left(e_{1}\right), \ldots, \rho_{p}\left(e_{m}\right)\right\} \subset \mathbb{Z}^{m-n}
$$

which satisfies that the following sequence is exact:

$$
0 \longrightarrow \mathbb{Z}^{m-n} \xrightarrow{\rho_{\rho}^{T}} \mathbb{Z} E_{p} \xrightarrow{\alpha_{p}} H^{2}\left(B T^{n}\right) \longrightarrow 0
$$

where $\rho_{p}=\left[\begin{array}{lll}\rho_{p}\left(e_{1}\right) & \cdots & \rho\left(e_{m}\right)\end{array}\right]$.
Then we can define $\rho: E \rightarrow \mathbb{Z}^{m-n}$ by $\rho(e):=\rho_{p}(e)$ for $e \in E_{p}$.
Definition (K-Matsumura-Yukitou)
We say (Γ, ρ, ∇) a Gale dual of GKM graph (Γ, α, ∇).

Example of (Γ, ρ, ∇)

For simplicity, in this talk, we only consider the case when $m=n+1$.

Example of (Γ, ρ, ∇)

For simplicity, in this talk, we only consider the case when $m=n+1$. In this case, $\rho(e) \in \mathbb{Z}$ satisfies (for $E_{p}=\left\{e_{1}, \ldots, e_{n+1}\right\}$)

$$
\sum_{i=1}^{n+1} \rho\left(e_{i}\right) \alpha\left(e_{i}\right)=0
$$

Example of (Γ, ρ, ∇)

For simplicity, in this talk, we only consider the case when $m=n+1$ In this case, $\rho(e) \in \mathbb{Z}$ satisfies (for $E_{p}=\left\{e_{1}, \ldots, e_{n+1}\right\}$)

$$
\sum_{i=1}^{n+1} \rho\left(e_{i}\right) \alpha\left(e_{i}\right)=0
$$

Example

Property of (Γ, ρ, ∇)

Theorem (K-Yukitou)
Let (Γ, α, ∇) be a complexity one GKM graph and (Γ, ρ, ∇) be its Gale dual. Then, for $\left\{\rho\left(e_{1}\right), \ldots, \rho\left(e_{n+1}\right)\right\} \subset \mathbb{Z}$ around each vertex,

Property of (Γ, ρ, ∇)

Theorem (K-Yukitou)
Let (Γ, α, ∇) be a complexity one GKM graph and (Γ, ρ, ∇) be its Gale dual. Then, for $\left\{\rho\left(e_{1}\right), \ldots, \rho\left(e_{n+1}\right)\right\} \subset \mathbb{Z}$ around each vertex,
(1) $\exists i, j, k$ s.t. $\rho\left(e_{i}\right) \rho\left(e_{j}\right) \rho\left(e_{k}\right) \neq 0$;

Property of (Γ, ρ, ∇)

Theorem (K-Yukitou)
Let (Γ, α, ∇) be a complexity one GKM graph and (Γ, ρ, ∇) be its Gale dual. Then, for $\left\{\rho\left(e_{1}\right), \ldots, \rho\left(e_{n+1}\right)\right\} \subset \mathbb{Z}$ around each vertex,
(1) $\exists i, j, k$ s.t. $\rho\left(e_{i}\right) \rho\left(e_{j}\right) \rho\left(e_{k}\right) \neq 0$;
(2) $\left|\rho\left(\nabla_{e_{j}}\left(e_{i}\right)\right)\right|=\left|\rho\left(e_{i}\right)\right|$ for $j \neq i$.

Property of (Γ, ρ, ∇)

Theorem (K-Yukitou)
Let (Γ, α, ∇) be a complexity one GKM graph and (Γ, ρ, ∇) be its Gale dual. Then, for $\left\{\rho\left(e_{1}\right), \ldots, \rho\left(e_{n+1}\right)\right\} \subset \mathbb{Z}$ around each vertex,
(1) $\exists i, j, k$ s.t. $\rho\left(e_{i}\right) \rho\left(e_{j}\right) \rho\left(e_{k}\right) \neq 0$;
(2) $\left|\rho\left(\nabla_{e_{j}}\left(e_{i}\right)\right)\right|=\left|\rho\left(e_{i}\right)\right|$ for $j \neq i$.

Example

§4 Theorem 1

Assume the GKM graph $(\Gamma, \alpha, \nabla), \alpha: E \rightarrow H^{2}\left(B T^{n}\right)$, extends to a torus graph $(\Gamma, \widetilde{\alpha}, \nabla), \widetilde{\alpha}: E \rightarrow H^{2}\left(B T^{n+1}\right)$.

§4 Theorem 1

Assume the GKM graph $(\Gamma, \alpha, \nabla), \alpha: E \rightarrow H^{2}\left(B T^{n}\right)$, extends to a torus graph $(\Gamma, \widetilde{\alpha}, \nabla), \widetilde{\alpha}: E \rightarrow H^{2}\left(B T^{n+1}\right)$.

Example

Let (Γ, ρ, ∇) be a Gale dual of (Γ, α, ∇).

Let (Γ, ρ, ∇) be a Gale dual of (Γ, α, ∇).
Put $H^{*}(\Gamma, \alpha)$ the equivariant cohomology (of GKM graph) defined by

$$
H^{*}(\Gamma, \alpha):=\left\{f: V \rightarrow H^{*}\left(B T^{n}\right) \mid f(p)-f(q) \equiv 0 \quad \bmod \alpha(p q)\right\} .
$$

Let (Γ, ρ, ∇) be a Gale dual of (Γ, α, ∇).
Put $H^{*}(\Gamma, \alpha)$ the equivariant cohomology (of GKM graph) defined by

$$
H^{*}(\Gamma, \alpha):=\left\{f: V \rightarrow H^{*}\left(B T^{n}\right) \mid f(p)-f(q) \equiv 0 \quad \bmod \alpha(p q)\right\}
$$

Then,
Theorem (K-Matsumura)

$$
H^{*}(\Gamma, \alpha) \simeq \mathbb{Z}[\Gamma, \nabla] / \mathcal{J},
$$

Let (Γ, ρ, ∇) be a Gale dual of (Γ, α, ∇).
Put $H^{*}(\Gamma, \alpha)$ the equivariant cohomology (of GKM graph) defined by

$$
H^{*}(\Gamma, \alpha):=\left\{f: V \rightarrow H^{*}\left(B T^{n}\right) \mid f(p)-f(q) \equiv 0 \quad \bmod \alpha(p q)\right\}
$$

Then,
Theorem (K-Matsumura)

$$
H^{*}(\Gamma, \alpha) \simeq \mathbb{Z}[\Gamma, \nabla] / \mathcal{J},
$$

where $\mathbb{Z}[\Gamma, \nabla]\left(\simeq H^{*}(\Gamma, \widetilde{\alpha})\right):=\mathbb{Z}\left[\tau_{K} \mid K \subset \Gamma\right] / \mathcal{I}$ is the face ring of $(\Gamma, \widetilde{\alpha}, \nabla)$

Let (Γ, ρ, ∇) be a Gale dual of (Γ, α, ∇).
Put $H^{*}(\Gamma, \alpha)$ the equivariant cohomology (of GKM graph) defined by

$$
H^{*}(\Gamma, \alpha):=\left\{f: V \rightarrow H^{*}\left(B T^{n}\right) \mid f(p)-f(q) \equiv 0 \bmod \alpha(p q)\right\}
$$

Then,
Theorem (K-Matsumura)

$$
H^{*}(\Gamma, \alpha) \simeq \mathbb{Z}[\Gamma, \nabla] / \mathcal{J},
$$

where $\mathbb{Z}[\Gamma, \nabla]\left(\simeq H^{*}(\Gamma, \widetilde{\alpha})\right):=\mathbb{Z}\left[\tau_{K} \mid K \subset \Gamma\right] / \mathcal{I}$ is the face ring of $(\Gamma, \widetilde{\alpha}, \nabla)$ and the ideal \mathcal{J} is generated by

$$
\sum_{i=1}^{m} \rho\left(e_{i}\right) \tau_{i}
$$

Here, e_{i} is a normal edge of a facet F_{i} (corresponding to τ_{i}).

Example of Theorem 1

Compute $H^{*}(\Gamma, \alpha)$.

Example of Theorem 1

Compute $H^{*}(\Gamma, \alpha)$.

By Maeda-Masuda-Panov's theorem, $H^{*}(\Gamma, \widetilde{\alpha})$ is isomorphic to

$$
\mathbb{Z}[\Gamma, \nabla]=\mathbb{Z}\left[\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right] /\left\langle\tau_{1} \cdots \tau_{4}\right\rangle,
$$

Thom classes $\tau_{1}, \ldots, \tau_{4}$ of $(\Gamma, \widetilde{\alpha}, \nabla)$

where

Gale dual of (Γ, α, ∇)

Since the ideal \mathcal{J} is computed by (Γ, ρ, ∇), we compute (Γ, ρ, ∇) :

(Γ, ρ, ∇)

The computation of \mathcal{J}

We can compute \mathcal{J} as follows:

We may take $\rho\left(e_{1}\right)=\rho\left(e_{2}\right)=1$ and $\rho\left(e_{3}\right)=\rho\left(e_{4}\right)=-1$ i.e., a generator of \mathcal{J} is $\sum_{i=1}^{4} \rho\left(e_{i}\right) \tau_{i}=\tau_{1}+\tau_{2}-\tau_{3}-\tau_{4}$.

The computation of \mathcal{J}

We can compute \mathcal{J} as follows:

We may take $\rho\left(e_{1}\right)=\rho\left(e_{2}\right)=1$ and $\rho\left(e_{3}\right)=\rho\left(e_{4}\right)=-1$ i.e., a generator of \mathcal{J} is $\sum_{i=1}^{4} \rho\left(e_{i}\right) \tau_{i}=\tau_{1}+\tau_{2}-\tau_{3}-\tau_{4}$.
Therefore, by Theorem 1,

$$
\begin{aligned}
H^{*}(\Gamma, \alpha) & \simeq \mathbb{Z}[\Gamma, \nabla] /\left\langle\tau_{1}+\tau_{2}-\tau_{3}-\tau_{4}\right\rangle \\
& \simeq \mathbb{Z}\left[\tau_{1}, \ldots, \tau_{4}\right]\left\langle\tau_{1} \cdots \tau_{4}, \tau_{1}+\tau_{2}-\tau_{3}-\tau_{4}\right\rangle
\end{aligned}
$$

Meaning of $\sum_{i=1}^{n+1} \rho\left(e_{i}\right) \tau_{i}$

Note $H^{*}(\Gamma, \alpha) \simeq H^{*}(\Gamma, \widetilde{\alpha}) /\left\langle x_{1}+x_{2}-x_{3}\right\rangle$.

Meaning of $\sum_{i=1}^{n+1} \rho\left(e_{i}\right) \tau_{i}$
Note $H^{*}(\Gamma, \alpha) \simeq H^{*}(\Gamma, \widetilde{\alpha}) /\left\langle x_{1}+x_{2}-x_{3}\right\rangle$.
We have $\tau_{1}+\tau_{2}-\tau_{3}-\tau_{4}=x_{1}+x_{2}-x_{3}$ by

§5 Theorem 2:

Group of axial functions and the Gale dual

Put $\mathcal{A}(=\mathcal{A}(\Gamma ;(\nabla, C)))$ be the group of axial functions [K. 2019] defined by

$$
\mathcal{A}=\left\{f: V \rightarrow \mathbb{Z}^{n+1} \mid \nabla_{p q}\left(f_{p}\right)-f_{q}=\left\langle f_{q}, q p\right\rangle C(q p)\right\}
$$

where, for $E_{p}=\left\{e_{1}, \ldots, e_{n+1}\right\}, f_{p}:=f(p) \in \mathbb{Z}^{n+1}=\mathbb{Z} E_{p}$,

§5 Theorem 2:

Group of axial functions and the Gale dual

Put $\mathcal{A}(=\mathcal{A}(\Gamma ;(\nabla, C)))$ be the group of axial functions [K. 2019] defined by

$$
\mathcal{A}=\left\{f: V \rightarrow \mathbb{Z}^{n+1} \mid \nabla_{p q}\left(f_{p}\right)-f_{q}=\left\langle f_{q}, q p\right\rangle C(q p)\right\}
$$

where, for $E_{p}=\left\{e_{1}, \ldots, e_{n+1}\right\}, f_{p}:=f(p) \in \mathbb{Z}^{n+1}=\mathbb{Z} E_{p}$, $\left\langle f_{q}, q p\right\rangle \in \mathbb{Z}$ is an integer corresponding to the edge $q p$, e.g., $\left\langle f_{q}, e_{1}\right\rangle=x_{1}$ for $f_{q}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z} E_{q}$,

$\S 5$ Theorem 2:

Group of axial functions and the Gale dual

Put $\mathcal{A}(=\mathcal{A}(\Gamma ;(\nabla, C)))$ be the group of axial functions [K. 2019] defined by

$$
\mathcal{A}=\left\{f: V \rightarrow \mathbb{Z}^{n+1} \mid \nabla_{p q}\left(f_{p}\right)-f_{q}=\left\langle f_{q}, q p\right\rangle C(q p)\right\}
$$

where, for $E_{p}=\left\{e_{1}, \ldots, e_{n+1}\right\}, f_{p}:=f(p) \in \mathbb{Z}^{n+1}=\mathbb{Z} E_{p}$, $\left\langle f_{q}, q p\right\rangle \in \mathbb{Z}$ is an integer corresponding to the edge $q p$, e.g., $\left\langle f_{q}, e_{1}\right\rangle=x_{1}$ for $f_{q}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z} E_{q}$, and $C: E \rightarrow \mathbb{Z}^{n+1}$ is the function defined by the congruence relations $\left(\alpha\left(\nabla_{p q}(e)\right)-\alpha(e)=C_{p q}(e) \alpha(p q)\right)$, i.e.,

$$
C(p q):=\left(C_{p q}\left(e_{1}\right), \ldots, C_{p q}\left(e_{n+1}\right)\right) .
$$

Example of \mathcal{A}

Let (Γ, α, ∇) be

$C: E \rightarrow \mathbb{Z}^{3}$ is defined by $C(p q)=\left(C_{p q}\left(e_{1}\right), C_{p q}\left(e_{2}\right), C_{p q}\left(e_{3}\right)\right)$ from $\alpha\left(\nabla_{p q}(e)\right)-\alpha(e)=C_{p q}(e) \alpha(p q)$.

Example of \mathcal{A}

Let (Γ, α, ∇) be

$C: E \rightarrow \mathbb{Z}^{3}$ is defined by $C(p q)=\left(C_{p q}\left(e_{1}\right), C_{p q}\left(e_{2}\right), C_{p q}\left(e_{3}\right)\right)$ from $\alpha\left(\nabla_{p q}(e)\right)-\alpha(e)=C_{p q}(e) \alpha(p q)$. Therefore,

So, we have

$$
\begin{aligned}
\mathcal{A} & =\left\{f:\{p, q\} \rightarrow \mathbb{Z}^{3} \mid \nabla_{e_{i}}\left(f_{p}\right)-f_{q}=\left\langle f_{q}, \overline{e_{i}}\right\rangle C\left(\overline{e_{i}}\right)\right\} \\
& =\left\{\left(f_{p}, f_{q}\right)=((x, y, z),(-x,-y,-z)) \mid x+y+z=0\right\} \\
& \simeq \mathbb{Z}^{2} .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\mathcal{A} & =\left\{f:\{p, q\} \rightarrow \mathbb{Z}^{3} \mid \nabla_{e_{i}}\left(f_{p}\right)-f_{q}=\left\langle f_{q}, \overline{e_{i}}\right\rangle C\left(\overline{e_{i}}\right)\right\} \\
& =\left\{\left(f_{p}, f_{q}\right)=((x, y, z),(-x,-y,-z)) \mid x+y+z=0\right\} \\
& \simeq \mathbb{Z}^{2} .
\end{aligned}
$$

Remark

\mathcal{A} is generated by

Theorem 2

Let (Γ, ρ, ∇) be the Gale dual of (Γ, α, ∇) and \mathcal{A} be the group of axial functions of (Γ, α, ∇). Then, the following theorem holds:

Theorem 2

Let (Γ, ρ, ∇) be the Gale dual of (Γ, α, ∇) and \mathcal{A} be the group of axial functions of (Γ, α, ∇). Then, the following theorem holds:

Theorem (K-Matsumura)

$$
\exists f \in \mathcal{A} \text { s.t. } f_{p}=\left(\rho_{p}\left(e_{1}\right), \cdots, \rho_{p}\left(e_{n+1}\right)\right) \text { for some } p \in V
$$

Theorem 2

Let (Γ, ρ, ∇) be the Gale dual of (Γ, α, ∇) and \mathcal{A} be the group of axial functions of (Γ, α, ∇). Then, the following theorem holds:

Theorem (K-Matsumura)

$$
\begin{gathered}
\exists f \in \mathcal{A} \text { s.t. } f_{p}=\left(\rho_{p}\left(e_{1}\right), \cdots, \rho_{p}\left(e_{n+1}\right)\right) \text { for some } p \in V \\
\stackrel{i f f}{\Leftrightarrow} \mathcal{A} \simeq \mathbb{Z}^{n+1} .
\end{gathered}
$$

Theorem 2

Let (Γ, ρ, ∇) be the Gale dual of (Γ, α, ∇) and \mathcal{A} be the group of axial functions of (Γ, α, ∇). Then, the following theorem holds:

Theorem (K-Matsumura)

$$
\begin{aligned}
& \exists f \in \mathcal{A} \text { s.t. } f_{p}=\left(\rho_{p}\left(e_{1}\right), \cdots, \rho_{p}\left(e_{n+1}\right)\right) \text { for some } p \in V \\
& \stackrel{i f f}{\Leftrightarrow} \mathcal{A} \simeq \mathbb{Z}^{n+1} .
\end{aligned}
$$

Together with [K. 2019],
Corollary

$$
\exists f \in \mathcal{A} \text { s.t. } f_{p}=\left(\rho_{p}\left(e_{1}\right), \cdots, \rho_{p}\left(e_{n+1}\right)\right) \text { for some } p \in V
$$

Theorem 2

Let (Γ, ρ, ∇) be the Gale dual of (Γ, α, ∇) and \mathcal{A} be the group of axial functions of (Γ, α, ∇). Then, the following theorem holds:

Theorem (K-Matsumura)

$$
\begin{aligned}
\exists f \in \mathcal{A} \text { s.t. } f_{p}=\left(\rho_{p}\left(e_{1}\right)\right. & \left., \cdots, \rho_{p}\left(e_{n+1}\right)\right) \text { for some } p \in V \\
& \Leftrightarrow \mathcal{i f f}
\end{aligned} \underset{\mathbb{Z}^{n+1} .}{ } .
$$

Together with [K. 2019],
Corollary

$$
\begin{gathered}
\exists f \in \mathcal{A} \text { s.t. } f_{p}=\left(\rho_{p}\left(e_{1}\right), \cdots, \rho_{p}\left(e_{n+1}\right)\right) \text { for some } p \in V \\
\stackrel{\text { iff }}{\Leftrightarrow}(\Gamma, \alpha, \nabla) \text { extends to a torus graph }(\Gamma, \widetilde{\alpha}, \nabla)
\end{gathered}
$$

Example of Theorem 2

The Gale dual of (Γ, α, ∇) is

(Γ, α, ∇)

($\Gamma, \rho, \nabla)$

The Gale dual on each vertex

is not an element of \mathcal{A}, because

The Gale dual on each vertex

is not an element of \mathcal{A}, because this cannot be generated by

The Gale dual on each vertex

is not an element of \mathcal{A}, because this cannot be generated by

Therefore, by Theorem 2, (Γ, α, ∇) does not extend to the torus graph ($\Gamma, \widetilde{\alpha}, \nabla)$.

Thank you for your attention

Note for zoom 1

Note for zoom 2

