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Multi-static Inverse Wave Scattering Theory

and Microwave Mammography
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1.

With the highest incidence occurring in women,
breast cancer causes about 520,000 deaths worldwide
[1] and about 14,000 deaths in Japan alone [2]. If
discovered early, the 5-year survival rate is 93% [3].
Throughout the history of development of breast can-
cer screening technology, there is no doubt that X-
ray mammography has survived as the most superior
breast-cancer-screening technique in comparison to
other techniques, including ultrasound, nuclear mag-
netic resonance imaging, and positron emission to-
mography. Unfortunately, despite advances in the
field, X-ray mammography is still deficient when it
comes to early and accurate detection of tumours,
especially in cases where breast tissue densities are
higher than average. This is because when collagen
fibres are compact and highly concentrated, a con-
dition known as “dense breasts,” X-rays cannot pro-
duce the contrast of the breast tumor due to both
the large X-ray absorption and its large fluctuation
of the collagen density, thus smaller cancer tumours
are not easily detected. Since dense breasts are found
in about 79% of women under 50 in Asia (61% in
Caucasians, 57% in Black, and 51% in Hispanic) [4],
a new breast-cancer-imaging technique is desperately
needed.

2.

Introduction

Electromagnetic Properties of
Breast Cancer

Breasts are mostly fat tissues by volume; the afore-
mentioned collagen fibres and mammary glands, which
serve to generate and transport breast milk, are found
in these fat tissues. Unfortunately, cancer tumours
can infiltrate the abovementioned mammary glands,
where they have easy access to the surrounding tissues
and are well supplied with blood capillaries. Interest-
ingly, when this is viewed in light of the theory of
electromagnetic properties, most breasts largely com-
prise insulating macromolecules with low relative per-
mittivity, whereas breast-cancer tumours have a high
relative permittivity. If we consider such properties,
it becomes clear that the microwave range, with rela-
tively long wavelengths that do not absorb well at the

* Kobe University
T Integral Geometry Science. Inc

Key Words: microwave mammography, analytical solution,
multi-static inverse scattering theory, dense breasts,

relative permittivity.

molecular level, is ideal for visualizing breast cancer
tumours.

However, microwave mammography cannot be ach-
ieved if one important problem is not first addressed:
the issue of inverse wave scattering. The challenge
of visualizing breast cancer tumours when breasts are
irradiated with microwave, referred to as the “scat-
terer,” lies in the fact the microwave are scattered
in various directions by breast cancer tumours with
high relative permittivity. In other words, if we could
develop a mathematical theory and algorithm that
visualizes the three-dimensional structures of a scat-
terer based on multi-static (multi-static) scattering
data obtained on a curved surface such as the surface
of a breast, the use of microwave mammography as
a tool in early detection could be realized [5]. In our
research, we have achieved to establish the world’s
first multi-static inverse scattering theory against the
unresolved issue.

3.

Four-dimensional Partial Differ-
ence Equation of Scattering Field

In this solution, it is assumed that the visualiza-
tion target is a cone with a linear generatrix (Fig. 1);
thus, antenna elements are linearly arranged. Let us
consider the tangent plane of a cone, including its ar-
ray antennas. On this tangent plane, we define the
z axis on the reference plane, the axis of the anten-
nas as the y axis, and the z axis is seen as being
perpendicular to these two axes. Thus, the x axis
rotates on the reference plane by 6 degrees around
the Z axis from the X axis. Assuming that the hypo-
thetical tangent plane rotates and the scattering data
obtained for all 8, we present the theory for recon-
structing three-dimensional structures within a cone
from multi-static time-series data on the cone’s sur-
face

If we define the multi-static coordinate i, y2 on
the y axis, a reconstruction theory can be established
on the fact that data are only obtained at one point
(z =0,y1,y2) for the = coordinate along the tangent
plane.

Below, we describe a method for obtaining the
relevant differential operator. Let us think of a situa-
tion in which one-dimensional array antenna (Fig. 2)
shifts to the x axis direction along the x —y plane. As
shown in Fig. 2, let us consider a situation wherein
a microwave emitted from the point P (z,y1,2) is re-
flected at the point P(£,n,¢) and received at the point
Py(x,y2,2z). When Point P moves throughout Range
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Fig. 1 Linear antenna array and a cone
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Fig. 2 One-dimensional array antenna

D, the signal received at P, can be expressed as fol-
lows:

So(xaylvy%z)://
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pr=v(x—E)>2+(y1—n)?+(z—()?
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where k is the wave number of the microwave, and the
factor of time is assumed to be relative to exp(—iwt).
Let the kernel function in the integration term of the
above Equation ¢, then:

eikpl eikPQ

2
o (2)
Thus, a partial differential equation is obtained in

which this equation or the differentiation and inte-

gration of this equation with respect to &£,1,( gives

an asymptotic solution. To that end, higher order

terms for 1/p created by the differentiation should be

ignored in the calculation; we then define the abbre-

viation for differentiation as
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Then, we obtain the following equation about the
kernel function ¢:

82081 - 0,20, %+

(ik)*(9y* +0,,%) = (k) | 0=0  (4)
Though this equation is derived under the assump-
tion of steady state, it can be easily expanded to in-
clude an unsteady state by substituting a variable as
seen below:
—ik — 7875
c

(5)

Where c is the speed of light. Ultimately, we obtain
the following equation:

4
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By applying the derivative to the integral kernel, ¢
satisfies the above-described partial differential equa-
tion. This equation is a four-dimensional psuedo-wave
equation consisting of five variables (¢,x,y1,y2,2).

4. Analytical Solution and
Three-dimensional Structure Im-
age of Scatter

Let us now solve this equation using Fourier trans-
form. First, we perform multiple Fourier transform of
 with respect to t,z,y1,y2

@(kmvkyuk‘yzvsz) =
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If we use D, for the differentiation with respect to
z, we obtain the following formula:

2
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where w =c k is used, the four fundamental solutions
for this equation are
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Considering that the temporal factor is e ~**, phase
is added by the microwave path and that the mi-
crowave reflected by an object bounces back to the
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measurement surface, we obtain F; as the only mean-
ingful solution. Therefore,

@(kkaylakyzazak) =
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(10)
By applying Fourier transform to the above equa-
tion, we obtain the solution ¢ for the wave Equation

(6):
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Let us now consider that measured data only ex-
ists for x =0; thus, the following equation stands:

o(x,y1,Y2,0,k) = 0r(y1,y2,k)d(z) (12)

If we apply this to the above equation with z=0,
we then obtain

©r(Y1,Y2,k)0(x) =
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Applying Fourier transform by (z,y1,y2) on both
sides of the equation, we obtain the following:

) :SZR(kyukyzvk)

Thus, we obtain the solution p(x,y1,y2,2,k) of the
partial differential equation. We can then take Trace
with respect to y1,y2 of the function ¢(x,y1,y2,2,k),
specifically, if the visual function is defined as y; —
y,Y2 — 1y, where the term k,z is fixed:
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We can now convert the variables to integrate with
respect to k:
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Next, we perform Fourier transform on Equation
(15) with respect to k, and apply ¢t =0. Then, we ob-
tain the visualization function p(r,0) in the localized
coordinate system at the angle 6 in Equation (17). We

describe 6 dependency of @r(ky,,ky,.k) positively as
@R(kyl 7ky25kv0)
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By integrating results for each 6, we obtain images
of three-dimensional structures.

) dkydk,, dk,, dk.] (17)



90 O AF LB 5 64 B

oy

3% (2020)

5. Conversion from Tangent Space
to the Whole Coordinate

We then convert the results calculated in the tan-
gent space to the whole coordinate (X, Y, Z). If we
consider the projection of y axis on the (X, Y) plane
as y', the following equations are established:

y =1y cosa+ Zsina (18)
z=—1'sina+ Zcosa

Where « is the angle between the coordinate axis z
of the tangent plane and the Z axis of the reference
plane. The equations converting from (z,y’) to (X,
Y) are

= X cosf +Ysinf (19)
Yy = —Xsinf+Y cosd

Summarizing the above gives

r = X cosf+Ysinf

y=—Xcosasinf+Y cosacost + Zsina (20)
z= Xsinasinf — Y sinacosf + Z cosa

We apply these conversion formulas to the follow-
ing equation:

S A
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We introduce the following variables:
kye = kyl + ky2 (22)
kyo =ky, —ky,

The above equation can be written as
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We perform the following variable conversions in
the spectral range:

& =—kycos0+ (kyccosa+k,sina)sind
1= —kgsinf — (kyccosa+ k. sina)cosf (24)

¢ = —kyesina+k,cosa

This inverse transformation gives the following equa-

tions:
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Then the reconstruction function for angle 6 be-

comes
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Since kg,ky1,ky2, and kz are functions with re-
spect to £,m,5, and ky, as in Equations (22) and (25),
these can be converted by performing Fourier trans-
form on data localized in the coordinate of angle 6
on the whole coordinate. Finally, the reconstruction
image is obtained by integrating with respect to the
angle 6:

2m
P(X,Y,Z)= / p(x,y,2,0)do
0
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In this paper, we describe the multi-static inverse
scattering theory that we have developed successfully
as the core application for microwave mammography
[5—7]. In clinical trials using a 1-14 GHz ultra-wideband
microwave mammography system [6,7] with over 350
breast cancer patients and healthy individuals, ac-
cording to the physics, high detection sensitivity was
shown in dense breasts. Fig. 3 shows the demonstra-
tion our microwave mammography image. In the fu-
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Fig. 3 Microwave mammography image[5]

ture, we hope that this system will become widespread,
thus helping many breast-cancer patients.

(2019 4F 5 F 30 H=2Aft)
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