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1 Formulations and solutions

Here, for the three inverse problems previously shown by Prof. Saito in his ab-
stract, we present formurations and solutions for those problems using Tikhonov
regularization.

1) Inverse source problem in the Poisson equation([1])
We obtained very and surprisingly simple approximate solutions for the Poisson
equation, for any L2(R

n) function g,

∆u = g on Rn (1.1)

in the class of the functions of the s order Sobolev Hilbert space Hs on the
whole real space Rn(n ≥ 1, s ≥ 2, s > n/2).

We shall use the n order Sobolev Hilbert space Hn comprising functions F
on Rn with the norm (Here, of course, r1 + r2 + · · ·+ rn = ν.)

∥F∥2HS
=

n∑
ν=0

nCν

ν∑
r1,r2,...,rn≥0

ν!

r1!r2! · · · rn!

∫
Rn

(
∂νF (x)

∂xr1
1 ∂xr2

2 · · · ∂xrn
n

)2

dx.

(1.2)

This Hilbert space admits the reproducing kernel

K(x, y) =
1

(2π)n

∫
Rn

1

(1 + |ξ|2)n
ei(x−y)·ξdξ (1.3)

as we see easily by using Fourier’s transform.Note that the Sobolev Hilbert
space Hs admitting the reproducing kernel (1.3) for n = s can be defined for
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any positive number s in term of Fourier integrals F̂ of F

F̂ (ξ) =
1

(2π)n/2

∫
Rn

e−iξ·xF (x)dx

as follows:

∥F∥2Hs =

∫
Rn

|F̂ (ξ)|2(1 + |ξ|2)sdξ

for any s > n/2.
Under these conditions our formulations and results are stated as follows:

Theorem 1 Let n ≥ 1, s ≥ 2 and s > n/2. For any function g ∈ L2(R
n) and

for any λ > 0, the best approximate function F ∗
λ,s,g in the sense

inf
F∈Hs

{
λ∥F∥2Hs + ∥g −∆F∥2L2(Rn)

}
= λ∥F ∗

λ,s,g∥2Hs + ∥g −∆F ∗
λ,s,g∥2L2(Rn)

(1.4)

exists uniquely and F ∗
λ,s,g is represented by

F ∗
λ,s,g(x) =

∫
Rn

g(ξ)Qλ,s(ξ − x)dξ (1.5)

for

Qλ,s(ξ − x) =
1

(2π)n

∫
Rn

−|p|2e−ip·(ξ−x)dp

λ(|p|2 + 1)s + |p|4
. (1.6)

If, for F ∈ Hs we consider the solution uF (x): ∆uF (x) = F (x) and we take
uF (ξ) as g, then we have the favourable result: as λ → 0

F ∗
λ,s,g → F, (1.7)

uniformly.

2) The problem in the heat conduction([2]); that is, from some heat u(x, t)
observation at a time t, look for the initial heat u(x, 0).

We gave simple approximate real inversion formulas for the Gaussian con-
volution (the Weierstrass transform)

uF (x, t) = (LtF )(x) =
1

(4πt)n/2

∫
Rn

F (ξ) exp

{
−|ξ − x|2

4t

}
dξ (1.8)

for the functions of the s order Sobolev Hilbert space Hs on the whole real
spaceRn(n ≥ 1, s > n/2). This integral transform which represents the solution
u(x, t) of the heat equation

ut(x, t) = uxx(x, t) on Rn × {t > 0} (u(x, 0) = F (x) on Rn). (1.9)

In this problem we can set same norm and reproducing kernel as (1.2) and (1.3).
Under those situations our formulations and results are stated as follows:
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Theorem 2 For any function g ∈ L2(R
n) and for any λ > 0, the best approx-

imate function F ∗
λ,s,g in the sense

inf
F∈Hs

{
λ∥F∥2Hs + ∥g − uF (·, t)∥2L2(Rn)

}
= λ∥F ∗

λ,s,g∥2Hs + ∥g − uF∗
λ,s,g

(·, t)∥2L2(Rn) (1.10)

exists uniquely and F ∗
λ,s,g is represented by

F ∗
λ,s,g(x) =

∫
Rn

g(ξ)Qλ,s(ξ − x)dξ (1.11)

for

Qλ,s(ξ − x) =
1

(2π)n

∫
Rn

e−ip·(ξ−x)dp

λ(|p|2 + 1)se|p|2t + e−|p|2t . (1.12)

If, for F ∈ Hs we consider the output uF (x, t) and we take uF (ξ, t) as g, then
we have the favourable result: as λ → 0

F ∗
λ,s,g → F, (1.13)

uniformly.

3) Real inversion formulas for the Laplace transform([3])
We obtained a very natural and numerical real inversion formula of the

Laplace transform

(LF )(p) = f(p) =

∫ ∞

0

e−ptF (t)dt, p > 0 (1.14)

for functions F of some natural function space. The inversion of the Laplace
transform is, in general, given by a complex form, however, we are interested
in and are requested to obtain its real inversion in many practical problems.
However, the real inversion will be very involved and one might think that its
real inversion will be essentially involved, because we must catch ”analyticity”
from the real or discrete data.

We shall introduce the simple reproducing kernel Hilbert space (RKHS) HK

comprised of absolutely continuous functions F on the positive real line R+

with finite norms {∫ ∞

0

|F ′(t)|2 1
t
etdt

}1/2

( F (0) = 0 ). (1.15)

This Hilbert space admits the reproducing kernel

K(t, t′) =

∫ min(t,t′)

0

ξe−ξdξ. (1.16)

Then we see that
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∫ ∞

0

|(LF )(p)p|2dp ≤ 1

2
∥F∥2HK

; (1.17)

that is, the linear operator on HK ,(LF )(p)p into L2(R
+, dp) = L2(R

+) is
bounded([4]). For the reproducing kernel Hilbert spaces HK satisfying (1.17),
we can find some general spaces.Therefore, from the general theory in [4], we
obtain

Theorem 3 ([4]). For any g ∈ L2(R
+) and for any α > 0, the best approxi-

mation F ∗
α,g in the sense

inf
F∈HK

{
α

∫ ∞

0

|F ′(t)|2 1
t
etdt+ ∥(LF )(p)p− g∥2L2(R+)

}
= α

∫ ∞

0

|F ∗′
α,g(t)|2

1

t
etdt+ ∥(LF ∗

α,g)(p)p− g∥2L2(R+) (1.18)

exists uniquely and we obtain the representation

F ∗
α,g(t) =

∫ ∞

0

g(ξ) (LKα(·, t)) (ξ)ξdξ. (1.19)

Here, Kα(·, t) is determined by the functional equation

Kα(t, t
′) =

1

α
K(t, t′)− 1

α
((LKα,t′)(p)p, (LKt)(p)p)L2(R+) (1.20)

for Kα,t′ = Kα(·, t′) and Kt = K(·, t).
We shall look for the approximate inversion F ∗

α,g(t) by using (1.19). For this
purpose, we take the Laplace transfrom of (1.20) in t and change the variables
t and t′ as in

(LKα(·, t))(ξ) =
1

α
(LK(·, t′))(ξ)− 1

α
((LKα,t′)(p)p, (L(LKt)(p)p))(ξ))L2(R+).

(1.21)

Note that

K(t, t′) =

{
−te−t − e−t + 1 for t ≤ t′

−t′e−t′ − e−t′ + 1 for t ≥ t′.

(LKα(·, t))(ξ) = e−t′pe−t′
[ −t′

p(p+ 1)
+

−1

p(p+ 1)2

]
+

1

p(p+ 1)2
. (1.22)∫ ∞

0

e−qt′(LK(·, t′))(p)dt′ = 1

pq(p+ q + 1)2
. (1.23)

Therefore, by setting (LKα(·, t))(ξ)ξ = Hα(ξ, t), which is needed in (1.19), we
obtain the Fredholm integral equation of the second type

αHα(ξ, t) +

∫ ∞

0

Hα(p, t)
1

(p+ ξ + 1)2
dp = −e−tξe−t

ξ + 1

(
t+

1

ξ + 1

)
+

1

(ξ + 1)2
.

(1.24)
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2 Some examples of numerical experiments

1) Inverse source problem in the Poisson equation([1])
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Figure 1: For g(x1, x2) = χ[−1,1](x1) × χ[−1,1](x2) on R2, the figures of
F ∗
λ,2,g(x1, x2) and ∆F ∗

λ,2,g(x1, x2) for λ = 10−2.

This numerical result shows that the new method ((1.5),(1.6)) is working
effectively and is useful.

2) The problem in the heat conduction([2])
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Figure 2: For g(x1, x2) = χ[−1,1](x1) × χ[−1,1](x2) on R2, the figures of
F ∗
λ,s,g(x1, x2) and uF∗

λ,s,g(x1,x2;t) for t = 1, s = 2, λ = 10−22.

The results of this numerical experiment prove the usefulness and correctness
of our method.
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3) Real inversion formulas for the Laplace transform([3])

Figure 3: For F (t) = χ(t, [1/2, 3/2]), the characteristic function and for α =
10−1, 10−4, 10−8, 10−12, 10−16.

Figure 4: For F (t) = χ(t, [1/2, 3/2]), the characteristic function and for α =
10−1, 10−4, 10−8, 10−12, 10−16.

The results of these numerical experiments show that our method is effective
even when there are jumps in the target function, and in Figure 4 we use a high-
precision numerical algorithm developed by our collaborator Professor Fujiwara.
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