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1 Introduction
A general constrained total variation (TV) flow for u : Ω× [0, T ) → M is given by

∂u

∂t
= −πu

(
−∇ · ∇u

|∇u|

)
in Ω× (0, T ),

∇u

|∇u|
· νΩ = 0 on ∂Ω× (0, T ),

u|t=0 = u0 in Ω,

(1)

where Ω ⊂ Rk (k ≥ 1) is a bounded region with Lipschitz boundary ∂Ω, M a manifold embedded into Rl (l ≥ 1),
u0 : Ω → M an initial datum, πp the orthogonal projection from the tangent space TpRl (= Rl) to the tangent space
TpM (⊂ Rl) at p ∈ M , νΩ the unit outward normal vector of ∂Ω, and T > 0. If πu is absent, (1) is the standard
vectorial total variation flow of the isotropic total variation of vector-valued maps:

TV(u) :=

∫
Ω

|∇u|Rk×l dx

The introduction of πu means that we restrict the gradient of total variation so that u always takes value in M .
Constrained TV flow (1) appears in diverse fields. The first application of this flow appears in [4], where the

authors considered the two-dimensional sphere S2 as the target manifold to denoise color images while preserving
brightness. This system, where the target manifold is the space SO(3) of all three-dimensional rotations, appears
in the Kobayashi–Warren–Carter model [3, 2], a basic prototype of the continuum model of the time evolution of
grain boundaries in a crystal.

Despite its broad applicability, there is still much room for research in the mathematical and numerical analysis
of constrained TV flows. This talk aims to develop a new numerical scheme for spatially discrete constrained total
variation flows based on the exponential map and the minimizing movement scheme.

2 Spatially discrete model and numerical scheme
2.1 Finite-dimensional Hilbert spaces and discrete constrained TV flows
Let ∆ be a finite set of indices and let Ω be a bounded region in Rk. A family Ω∆ = {Ωα}α∈∆ of subsets of Ω is a
rectangular partition of Ω if Ω∆ satisfies the following three conditions.

(i) L k
(
Ω \

⋃
α∈∆ Ωα

)
= 0.

(ii) L k(Ωα ∩ Ωβ) = 0 for α 6= β, (α, β) ∈ ∆×∆; here L k denotes the Lebesgue measure.
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(iii) For each α ∈ ∆, there exists a rectangular region Rα ∈ Rk such that Ωα = Rα ∩ Ω holds. Here, by a
rectangular region, we mean for some aj < bj that

Rα = {x = (x1, . . . , xk) | aj < xj < bj , j = 1, 2, . . . , k}.

We denote by e(∆) the set of edges associated with ∆ defined as

e(∆) := {{α, β} ⊂ ∆ | Hk−1(∂Ωα ∩ ∂Ωβ) 6= 0, α 6= β},

where Hk−1 denotes the (k − 1)-dimensional Hausdorff measure.
Subsequently, we fix the rectangular partition Ω∆ of Ω. Then, define the space of piecewise Rl-valued constant

functions as

H∆ :=

{
u =

∑
α∈∆

uα1Ωα

∣∣∣∣∣ uα ∈ Rl, α ∈ ∆

}
.

We can regard that H∆ is a closed subspace of the Hilbert space L2(Ω;Rl) with an inner product

〈X,Y 〉H∆
:= 〈X,Y 〉L2(Ω;Rl).

The discrete total variation functional TV∆ : H∆ → R associated with Ω∆ is defined as follows:

TV∆(u) :=
∑

{α,β}∈e(∆)

‖uα − uβ‖RlHk−1(∂Ωα ∩ ∂Ωβ).

Moreover, we define the space of piecewise M -valued constant functions as

M∆ :=

{
u =

∑
α∈∆

uα1Ωα

∣∣∣∣∣ uα ∈ M, α ∈ ∆

}
.

We finally introduce the orthogonal projection Pu : H∆ → M∆ at u ∈ M∆ by

PuX(x) := πu(x)(X(x)) for a.e. x ∈ Ω.

Definition 2.1. Let u0 ∈ M∆ and I := [0, T ). A map u ∈ W 1,2(I;M∆) is said to be a solution to the discrete
model of (1) if u satisfies 

du

dt
∈ −Pu(t)∂TV∆(u(t)) for a.e. t ∈ (0, T ),

u|t=0 = u0.
(2)

2.2 Numerical scheme
Let τ be the time step and define tn := nτ . According to the minimizing movement scheme, from solution u

(n−1)
τ

at the current time, we want to define the solution u
(n)
τ at the next time as the minimizer to the following problem:

minimize Φτ (u;u(n−1)
τ ) := τTV∆(u) +

1

2
‖u− u(n−1)

τ ‖2H∆
subject to u ∈ M∆.

However, it is not easy to solve this problem since it is a non-smooth Riemannian constraint optimization problem.
To overcome this difficulty, we localize the energy by employing the exponential map. Thanks to the exponen-
tial map in M , each u ∈ M∆ can be written as a u

(n−1)
τ and X ∈ T

u
(n−1)
τ

M∆ pair: u = Exp
u
(n−1)
τ

(X), where
Exp

u
(n−1)
τ

: T
u
(n−1)
τ

M∆ → M∆ is defined as

X(x) 7−→ exp
u
(n−1)
τ (x)

(X(x)) for a.e. x ∈ Ω.

Here, TuM∆ denotes the tangent space of M∆ at u ∈ M∆, and expx is the exponential map of the Riemannian
manifold M . Since Exp

u
(n−1)
τ

(X) = u
(n−1)
τ +X + o(X), we ignore the term o(X) and insert u = u

(n−1)
τ +X into

Φτ (u, u
(n−1)
τ ) to obtain the localized energy

Φτ
loc(X;u(n−1)

τ ) := τTV∆(u
(n−1)
τ +X) +

1

2
‖X‖2H∆

, X ∈ H∆.

As a result, we obtain the following modified minimizing movement scheme.



(i) From solution u
(n−1)
τ at the current time, we compute the unique minimizer X

(n−1)
τ of the following problem:

minimize Φτ
loc(X;u(n−1)

τ ) subject to X ∈ T
u
(n−1)
τ

M∆.

(ii) Set u
(n)
τ := Exp

u
(n−1)
τ

(X
(n−1)
τ ).

Concerning the above constructed numerical scheme, we obtain the following results.

Theorem 2.2 (Energy dissipation). Let M be a C2-compact manifold embedded into Rl, I := [0, T ), u0 ∈ M∆ be
an initial datum, τ > 0 be a step size, and {u(n)

τ }n be a sequence generated by the modified minimizing movement
scheme. If τ is sufficiently small, then TV∆(u

(n+1)
τ ) ≤ TV∆(u

(n)
τ ) holds.

Namely, the proposed scheme inherits the property that the total variation dissipates along with the flow.

Theorem 2.3 (Error estimate). Let M be a path-connected and C2-compact manifold embedded into Rl, I := [0, T ),
u0 ∈ M∆ be an initial datum, and τ > 0 be a step size. Denote by u the solution of the discrete model (2) and by
{u(n)

τ }n the sequence obtained by the modified minimizing movement scheme. Then, there exist constants C0, C1,
and C2 independent of u and τ such that the following error estimate holds:

‖uτ (t
n)− u(n)

τ ‖2H∆
≤ tneC0t

n (
C1τ + C2τ

2
)
, n = 0, 1, . . . .

This theorem implies that the accuracy of the proposed scheme is the order of
√
τ .

In the talk, we will present the details of the derivation of the above numerical scheme and the idea of the proof of
two theorems. We will also show numerical results for constrained total variation flows, where the target manifolds
are S2 and SO(3). Finally, we introduce the spatially discrete Kobayashi–Warren–Carter energy and numerically
study the solution’s asymptotic behavior to the gradient flow of its energy compared with the Ambrosio–Tortorelli
energy.

The contents of the constrained total variation flow are summarized in our paper [1].
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