Reconstruction of the defect by the enclosure method for inverse problems of the magnetic Schrödinger operator

Ryusei Yamashita

This study is based on the paper [1]. We give the formula to extract the position and the shape of the defect D generated in the object (conductor) Ω from the observation data on the boundary $\partial \Omega$ for the magnetic Schrödinger operator by using the enclosure method proposed by Ikehata [2]. We show a reconstruction formula of the convex hull of the defect D from the observed data, assuming certain higher regularity for the potentials of the magnetic Schrödinger operator, under the Dirichlet condition or the Robin condition on the boundary ∂D in the two and three dimensional case.

Let $\Omega \subset \mathbb{R}^n (n = 2, 3)$ be a bounded domain where the boundary $\partial \Omega$ is C^2 and let D be an open set satisfying $\mathring{D} \subset \Omega$ and $\Omega \setminus \mathring{D}$ is connected. The defect D consists of the union of disjoint bounded domains $\{D_j\}_{j=1}^n$, where the boundary of D is Lipschitz continuous. First, we define the DN map for the magnetic Schrödinger equation with no defect D in Ω. Here, let $D_j a u := \sum_{j=1}^n D_{A,j} (D_{A,j} u)$, where $D_{A,j} := \frac{1}{\lambda_j} \partial_j + A_j$ and $A = (A_1, A_2, \cdots, A_n)$.

Definition 1. Suppose $q \in L^\infty(\Omega), q \geq 0, A \in C^1(\mathring{\Omega}, \mathbb{R}^n)$. For a given $f \in H^{1/2}(\partial \Omega)$, we say $u \in H^1(\Omega)$ is a weak solution to the following boundary value problem for the magnetic Schrödinger equation

$$\begin{cases} D_A^2 u + qu = 0 \text{ in } \Omega, \\ u = f \text{ on } \partial \Omega, \end{cases} \quad (1.1)$$

if $u = f$ on $\partial \Omega$ and u satisfies

$$\int_{\Omega} (D_A u) \cdot \overline{D_A \varphi} + qu \overline{\varphi} \, dx = 0$$

for any $\varphi \in H^1(\Omega)$ such that $\varphi|_{\partial \Omega} = 0$. Here, $\overline{\varphi}$ is the complex conjugate of φ.

The DN map $\Lambda_{q,A}$ is defined as follows.

Definition 2. (Weak formulation of DN map)
The DN map $\Lambda_{q,A} : H^{1/2}(\partial \Omega) \rightarrow H^{-1/2}(\partial \Omega)$ is defined as follows by the duality:

$$\langle \Lambda_{q,A} f, \overline{g} \rangle = \int_{\Omega} (D_A u) \cdot \overline{D_A v} + qu \overline{v} \, dx, \quad f, g \in H^{1/2}(\partial \Omega),$$

where $u \in H^1(\Omega)$ is the weak solution of (1.1) and $v \in H^1(\Omega)$ is any function satisfying $v|_{\partial \Omega} = g$.

We define the weak solution of the magnetic Schrödinger equation with a defect D in Ω under the Robin boundary condition on ∂D.

Definition 3. (Robin case)
Suppose $q \in L^\infty(\Omega \setminus \overline{D}), q \geq 0, \lambda \in C^1(\partial D), \lambda \geq 0$ and $A \in C^1(\Omega \setminus \overline{D}, \mathbb{R}^n)$. Let ν is the outward unit normal vector to $\Omega \setminus \overline{D}$. For a given $f \in H^{1/2}(\partial \Omega)$, we say $u \in H^1(\Omega \setminus \overline{D})$ is a weak solution to the following value problem for the magnetic Schrödinger equation

$$\begin{cases} D_A^2 u + qu = 0 \text{ in } \Omega \setminus \overline{D}, \\ \nu \cdot (\nabla + iA) u + \lambda u = 0 \text{ on } \partial D, \\ u = f \text{ on } \partial \Omega, \end{cases} \quad (1.3)$$

if $u = f$ on $\partial \Omega$ and u satisfies

$$\int_{\Omega \setminus \overline{D}} (D_A u) \cdot \overline{D_A \varphi} + qu \overline{\varphi} \, dx + \int_{\partial D} \lambda u \overline{\varphi} \, dS = 0$$

for any $\varphi \in H^1(\Omega \setminus \overline{D})$ such that $\varphi|_{\partial \Omega} = 0$.

The DN map $\Lambda_{q,A,D}^{(R)}$ is defined as follows.
Definition 4. (DN map of the Robin case)

The DN map \(\Lambda_{q,A,D}^{(R)} : H^{1/2}(\partial \Omega) \to H^{-1/2}(\partial \Omega) \) is defined as follows by the duality:

\[
\langle (\Lambda_{q,A,D}^{(R)} f), \varphi \rangle = \int_{\partial \Omega} \lambda u \varphi dS + \int_{\Omega \setminus \overline{D}} (D_A u) \cdot D_A \overline{v} + q u \overline{v} \, dx, \quad f, g \in H^{1/2}(\partial \Omega),
\]

where \(u \in H^1(\Omega \setminus \overline{D}) \) is the weak solution of (1.3) and \(\varphi \in H^1(\Omega \setminus \overline{D}) \) is any function \(\varphi|_{\partial \Omega} = g \).

In the special case \(\lambda = 0 \), we denote \(\Lambda_{q,A,D}^{(N)} \) instead of \(\Lambda_{q,A,D}^{(R)} \).

Remark 1. The weak solution of the magnetic Schrödinger equation with a defect \(D \) in \(\Omega \) under the Dirichlet boundary condition on \(\partial D \) and the DN map \(\Lambda_{q,A,D}^{(D)} \) can be defined in a similar way.

Next, we introduce an indicator function that plays an important role in the enclosure method. We denote by \(A \) obtained from the indicator function \(I \).

Since the indicator function \(I \) is Lipschitz continuous. Let \(A \) be defined as follows:

\[
h_D(\omega) = \sup_{x \in D} x \cdot \omega, \quad \omega \in S^{n-1}.
\]

Then it is well-known that the convex hull \(\text{conv}(D) \) of \(D \) is obtained as follows.

\[
\text{conv}(D) := \cap_{\omega \in S^{n-1}} \{ x \in R^n | x \cdot \omega < h_D(\omega) \}.
\]

Since the indicator function \(I_{\omega}(\tau; t) \) is determined from the DN map, if the support function \(h_D(\omega) \) is obtained from the indicator function \(I_{\omega}(\tau; t) \), the convex hull \(\text{conv}(D) \) of inclusion \(D \) can be reconstructed from the observation data on boundary \(\partial \Omega \). Now, we give the formula of the reconstruction of the support function under a certain smallness condition for the vector potential \(A \).

Theorem 1. Suppose \(\partial D \) is Lipschitz continuous. Let \(n = 2, 3, q \in H^2(\Omega), q \geq 0, A \in H^3(\Omega) \) and \(C(\Omega)||A||_{H^3(\Omega)} \leq \frac{1}{2} \). Then, we have

\[
\lim_{\tau \to \infty} \frac{\log |I_{\omega}^{(D)}(\tau; 0)|}{2\tau} = h_D(w), \quad \lim_{\tau \to \infty} \frac{\log |I_{\omega}^{(N)}(\tau; 0)|}{2\tau} = h_D(w),
\]

for any \(\omega \in S^{n-1} \). Here, the constant \(C(\Omega) \) depends only on \(\Omega \).

For a given \(\omega \in S^{n-1} \), we further assume the following condition \((D)_\omega \) for the Robin case.

(D)_\omega: Suppose \(\partial D \) is \(C^2 \) and the set \(T(\omega) := \{ x \in \overline{D} | h_D(\omega) - x \cdot \omega = 0 \} \) consists of only one point \(x_0 \in \partial D \). Furthermore, we assume that in the neighborhood of \(x_0 \) the boundary \(\partial D \) can be expressed as \(y = f(s), |s| < \epsilon, s \in R^{n-1} \), and there exists \(K_0, K_1 > 0, m_\omega \geq 2 \) such that

\[
K_0 |s|^{m_\omega} \leq f(s) \leq K_1 |s|^{m_\omega}, \quad (|s| < \epsilon).
\]

Theorem 2. (Robin case) Suppose \(\lambda \neq 0, \lambda \geq 0 \) and \(\lambda \in C^1(\partial D) \). Let \(n = 2, 3, q \in H^2(\Omega), q \geq 0, A \in H^3(\Omega) \) and \(C(\Omega)||A||_{H^3(\Omega)} \leq \frac{1}{2} \). We assume that the condition \((D)_\omega \) holds as \(2 \leq m_\omega < 3 \) for some \(\omega \in S^{n-1} \). Then, we have

\[
\lim_{\tau \to \infty} \frac{\log |I_{\omega}^{(R)}(\tau; 0)|}{2\tau} = h_D(\omega).
\]

References
