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This study is based on the paper [1]. We give the formula to extract the position and the shape of
the defect D generated in the object (conductor) Ω from the observation data on the boundary ∂Ω for
the magnetic Schrödinger operator by using the enclosure method proposed by Ikehata [2]. We show a
reconstruction formula of the convex hull of the defect D from the observed data, assuming certain higher
regularity for the potentials of the magnetic Schrödinger operator, under the Dirichlet condition or the
Robin condition on the boundary ∂D in the two and three dimensional case.

Let Ω ⊂ Rn(n = 2, 3) be a bounded domain where the boundary ∂Ω is C2 and let D be an open
set satisfying D ⊂ Ω and Ω \ D is connected. The defect D consists of the union of disjoint bounded
domains {Dj}nj=1, where the boundary of D is Lipschitz continuous. First, we define the DN map for

the magnetic Schrödinger equation with no defect D in Ω. Here, let D2
Au :=

∑n
j=1 DA,j(DA,ju), where

DA,j :=
1
i ∂j +Aj and A = (A1, A2, · · · , An).

Definition 1. Suppose q ∈ L∞(Ω), q ≥ 0, A ∈ C1(Ω, Rn). For a given f ∈ H1/2(∂Ω), we say u ∈ H1(Ω)
is a weak solution to the following boundary value problem for the magnetic Schrödinger equation{

D2
Au+ qu = 0 in Ω,

u = f on ∂Ω,
(1.1)

if u = f on ∂Ω and u satisfies ∫
Ω

(DAu) ·DAφ+ quφ dx = 0

for any φ ∈ H1(Ω) such that φ|∂Ω = 0. Here, φ is the complex conjugate of φ.

The DN map Λq,A is defined as follows.

Definition 2. (Weak formulation of DN map)

The DN map Λq,A : H
1
2 (∂Ω) → H− 1

2 (∂Ω) is defined as follows by the duality:

⟨Λq,Af , g⟩ =
∫
Ω

(DAu) ·DAv + quv dx, f, g ∈ H1/2(∂Ω),

where u ∈ H1(Ω) is the weak solution of (1.1) and v ∈ H1(Ω) is any function satisfying v|∂Ω = g.

We define the weak solution of the magnetic Schrödinger equation with a defect D in Ω under the
Robin boundary condition on ∂D.

Definition 3. (Robin case)

Suppose q ∈ L∞(Ω \ D), q ≥ 0, λ ∈ C1(∂D), λ ≥ 0 and A ∈ C1(Ω \D,Rn). Let ν is the outward unit
normal vector to Ω \ D. For a given f ∈ H1/2(∂Ω), we say u ∈ H1(Ω \ D) is a weak solution to the
following value problem for the magnetic Schrödinger equation

D2
Au+ qu = 0 in Ω \D,

ν · (∇+ iA)u+ λu = 0 on ∂D,

u = f on ∂Ω,

(1.3)

if u = f on ∂Ω and u satisfies∫
Ω\D

(DAu) ·DAφ+ quφ dx+

∫
∂D

λuφdS = 0

for any φ ∈ H1(Ω \D) such that φ|∂Ω = 0.

The DN map Λ
(R)
q,A,D is defined as follows.
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Definition 4. (DN map of the Robin case)

The DN map Λ
(R)
q,A,D : H

1
2 (∂Ω) → H− 1

2 (∂Ω) is defined as follows by the duality:

⟨Λ(R)
q,A,Df , g⟩ =

∫
∂D

λuv dS +

∫
Ω\D

(DAu) ·DAv + quv dx, f, g ∈ H1/2(∂Ω),

where u ∈ H1(Ω \D) is the weak solution of (1.3) and φ ∈ H1(Ω \D) is any function φ|∂Ω = g.

In the special case λ = 0, we denote Λ
(N)
q,A,D instead of Λ

(R)
q,A,D.

Remark 1. The weak solution of the magnetic Schrödinger equation with a defect D in Ω under the

Dirichlet boundary condition on ∂D and the DN map Λ
(D)
q,A,D can be defined in a similar way.

Next, we introduce an indicator function that plays an important role in the enclosure method.
We denote by Sn−1 the set of n-dimensional unit vectors (n = 2, 3). For a given ω ∈ Sn−1, we can
take an orthogonal unit vector ω⊥ ∈ Sn−1, namely ω · ω⊥ = 0. Then we can construct a solution

vτ (x;ω) := eτx·(ω+iω⊥)(1 + rτ (x;ω)) of D
2
Av + qv = 0, where rτ (x;ω) is chosen suitably associated with

the parameter τ ∈ R. This solution is called the complex geometrical optics solutions.

Definition 5. (Indicator function)
Let t, τ ∈ R. Then, the indicator function Iω(τ ; t) is defined as follows.

I(R)
ω (τ ; t) := ⟨(Λq,A − Λ

(R)
q,A,D)(e−τtvτ (x;ω)), e−τtvτ (x;ω)⟩

Here, vτ is the complex conjugate of vτ．In the special case λ = 0, we denote Λ
(N)
q,A,D instead of Λ

(R)
q,A,D.

Also, I
(D)
ω (τ ; t) can be defined by Λ

(D)
q,A,D. We define the support function hD(ω) as follows :

hD(ω) = sup
x∈D

x · ω, ω ∈ Sn−1.

Then it is well-known that the convex hull conv(D) of D is obtained as follows.

conv(D) := ∩ω∈Sn−1{x ∈ Rn|x · ω < hD(ω)}.

Since the indicator function Iω(τ ; t) is determined from the DN map, if the support function hD(ω) is
obtained from the indicator function Iω(τ ; t), the convex hull conv(D) of inclusion D can be reconstructed
from the observation data on boundary ∂Ω. Now, we give the formula of the reconstruction of the support
function from the indicator function under a certain smallness condition for the vector potential A.

Theorem 1. Suppose ∂D is Lipschitz continuous. Let n = 2, 3, q ∈ H2(Ω), q ≥ 0, A ∈ H3(Ω) and
C(Ω)∥A∥H2(Ω) ≤ 1

2．Then, we have

lim
τ→∞

log |I(D)
w (τ ; 0)|
2τ

= hD(w), lim
τ→∞

log |I(N)
w (τ ; 0)|
2τ

= hD(w),

for any ω ∈ Sn−1. Here, the constant C(Ω) depends only on Ω.

For a given ω ∈ Sn−1, we furthermore assume the following condition (D)ω for the Robin case.

(D)ω: Suppose ∂D is C2 and the set T (ω) := {x ∈ D | hD(ω) − x · ω = 0} consists of only one point
x0 ∈ ∂D. Furthermore, we assume that in the neighborhood of x0 the boundary ∂D can be expressed as
y = f(s), |s| < ϵ, s ∈ Rn−1, and there exists K0,K1 > 0,mω ≥ 2 such that

K0|s|mw ≤ f(s) ≤ K1|s|mw (|s| < ϵ).

Theorem 2. (Robin case) Suppose λ ̸= 0, λ ≥ 0 and λ ∈ C1(∂D). Let n = 2, 3, q ∈ H2(Ω), q ≥ 0, A ∈
H3(Ω) and C(Ω)∥A∥H2(Ω) ≤ 1

2 . We assume that the condition (D)ω holds as 2 ≤ mw < 3 for some
ω ∈ Sn−1. Then, we have

lim
τ→∞

log |I(R)
ω (τ ; 0)|
2τ

= hD(ω).
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