Reconstruction of the defect by the enclosure method for inverse problems of the magnetic Schrödinger operator

Ryusei Yamashita

This study is based on the paper [1]. We give the formula to extract the position and the shape of the defect D generated in the object (conductor) Ω from the observation data on the boundary $\partial\Omega$ for the magnetic Schrödinger operator by using the enclosure method proposed by Ikehata [2]. We show a reconstruction formula of the convex hull of the defect D from the observed data, assuming certain higher regularity for the potentials of the magnetic Schrödinger operator, under the Dirichlet condition or the Robin condition on the boundary ∂D in the two and three dimensional case.

Let $\Omega \subset \mathbb{R}^n (n = 2, 3)$ be a bounded domain where the boundary $\partial\Omega$ is C^2 and let D be an open set satisfying $\overline{D} \subset \Omega$ and $\Omega \setminus \overline{D}$ is connected. The defect D consists of the union of disjoint bounded domains $\{D_j\}_{j=1}^n$, where the boundary of D is Lipschitz continuous. First, we define the DN map for the magnetic Schrödinger equation with no defect D in Ω . Here, let $D_A^2 u := \sum_{j=1}^n D_{A,j}(D_{A,j}u)$, where $D_{A,j} := \frac{1}{i}\partial_j + A_j$ and $A = (A_1, A_2, \dots, A_n)$.

Definition 1. Suppose $q \in L^{\infty}(\Omega), q \ge 0, A \in C^1(\overline{\Omega}, \mathbb{R}^n)$. For a given $f \in H^{1/2}(\partial\Omega)$, we say $u \in H^1(\Omega)$ is a weak solution to the following boundary value problem for the magnetic Schrödinger equation

$$\begin{cases} D_A^2 u + qu = 0 \text{ in } \Omega, \\ u = f \text{ on } \partial\Omega, \end{cases}$$
(1.1)

if u = f on $\partial \Omega$ and u satisfies

$$\int_{\Omega} (D_A u) \cdot \overline{D_A \varphi} + q u \overline{\varphi} \, dx = 0$$

for any $\varphi \in H^1(\Omega)$ such that $\varphi|_{\partial\Omega} = 0$. Here, $\overline{\varphi}$ is the complex conjugate of φ .

The DN map $\Lambda_{q,A}$ is defined as follows.

Definition 2. (Weak formulation of DN map) The DN map $\Lambda_{q,A} : H^{\frac{1}{2}}(\partial\Omega) \to H^{-\frac{1}{2}}(\partial\Omega)$ is defined as follows by the duality:

$$\langle \Lambda_{q,A}f , \overline{g} \rangle = \int_{\Omega} (D_A u) \cdot \overline{D_A v} + q u \overline{v} \, dx, \quad f,g \in H^{1/2}(\partial \Omega),$$

where $u \in H^1(\Omega)$ is the weak solution of (1.1) and $v \in H^1(\Omega)$ is any function satisfying $v|_{\partial\Omega} = g$.

We define the weak solution of the magnetic Schrödinger equation with a defect D in Ω under the Robin boundary condition on ∂D .

Definition 3. (Robin case)

Suppose $q \in L^{\infty}(\Omega \setminus \overline{D}), q \geq 0, \lambda \in C^{1}(\partial D), \lambda \geq 0$ and $A \in C^{1}(\Omega \setminus \overline{D}, \mathbb{R}^{n})$. Let ν is the outward unit normal vector to $\Omega \setminus \overline{D}$. For a given $f \in H^{1/2}(\partial \Omega)$, we say $u \in H^{1}(\Omega \setminus \overline{D})$ is a weak solution to the following value problem for the magnetic Schrödinger equation

$$\begin{cases} D_A^2 u + qu = 0 \text{ in } \Omega \setminus \overline{D}, \\ \nu \cdot (\nabla + iA)u + \lambda u = 0 \text{ on } \partial D, \\ u = f \text{ on } \partial \Omega, \end{cases}$$
(1.3)

if u = f on $\partial \Omega$ and u satisfies

$$\int_{\Omega \setminus \overline{D}} (D_A u) \cdot \overline{D_A \varphi} + q u \overline{\varphi} \, dx + \int_{\partial D} \lambda u \overline{\varphi} \, dS = 0$$

for any $\varphi \in H^1(\Omega \setminus \overline{D})$ such that $\varphi|_{\partial\Omega} = 0$.

The DN map $\Lambda_{q,A,D}^{(R)}$ is defined as follows.

Definition 4. (DN map of the Robin case)

The DN map $\Lambda_{q,A,D}^{(R)}: H^{\frac{1}{2}}(\partial\Omega) \to H^{-\frac{1}{2}}(\partial\Omega)$ is defined as follows by the duality:

$$\langle \Lambda^{(R)}_{q,A,D} f \ , \ \overline{g} \rangle = \int_{\partial D} \lambda u \overline{v} \, dS + \int_{\Omega \setminus \overline{D}} (D_A u) \cdot \overline{D_A v} + q u \overline{v} \, dx, \ \ f,g \in H^{1/2}(\partial \Omega),$$

where $u \in H^1(\Omega \setminus \overline{D})$ is the weak solution of (1.3) and $\varphi \in H^1(\Omega \setminus \overline{D})$ is any function $\varphi|_{\partial\Omega} = g$. In the special case $\lambda = 0$, we denote $\Lambda_{q,A,D}^{(N)}$ instead of $\Lambda_{q,A,D}^{(R)}$.

Remark 1. The weak solution of the magnetic Schrödinger equation with a defect D in Ω under the Dirichlet boundary condition on ∂D and the DN map $\Lambda_{q,A,D}^{(D)}$ can be defined in a similar way.

Next, we introduce an indicator function that plays an important role in the enclosure method. We denote by S^{n-1} the set of n-dimensional unit vectors (n = 2, 3). For a given $\omega \in S^{n-1}$, we can take an orthogonal unit vector $\omega^{\perp} \in S^{n-1}$, namely $\omega \cdot \omega^{\perp} = 0$. Then we can construct a solution $v_{\tau}(x;\omega) := e^{\tau x \cdot (\omega + i\omega^{\perp})} (1 + r_{\tau}(x;\omega))$ of $D_A^2 v + qv = 0$, where $r_{\tau}(x;\omega)$ is chosen suitably associated with the parameter $\tau \in R$. This solution is called the complex geometrical optics solutions.

Definition 5. (Indicator function)

Let $t, \tau \in \mathbb{R}$. Then, the indicator function $I_{\omega}(\tau; t)$ is defined as follows.

$$I_{\omega}^{(R)}(\tau;t) := \langle (\Lambda_{q,A} - \Lambda_{q,A,D}^{(R)})(e^{-\tau t}v_{\tau}(x;\omega)), \overline{e^{-\tau t}v_{\tau}(x;\omega)} \rangle$$

Here, $\overline{v_{\tau}}$ is the complex conjugate of v_{τ} . In the special case $\lambda = 0$, we denote $\Lambda_{q,A,D}^{(N)}$ instead of $\Lambda_{q,A,D}^{(R)}$. Also, $I_{\omega}^{(D)}(\tau;t)$ can be defined by $\Lambda_{q,A,D}^{(D)}$. We define the support function $h_D(\omega)$ as follows :

$$h_D(\omega) = \sup_{x \in D} x \cdot \omega, \ \omega \in S^{n-1}$$

Then it is well-known that the convex hull conv(D) of D is obtained as follows.

$$\operatorname{conv}(D) := \bigcap_{\omega \in S^{n-1}} \{ x \in R^n | x \cdot \omega < h_D(\omega) \}.$$

Since the indicator function $I_{\omega}(\tau; t)$ is determined from the DN map, if the support function $h_D(\omega)$ is obtained from the indicator function $I_{\omega}(\tau; t)$, the convex hull conv(D) of inclusion D can be reconstructed from the observation data on boundary $\partial\Omega$. Now, we give the formula of the reconstruction of the support function from the indicator function under a certain smallness condition for the vector potential A.

Theorem 1. Suppose ∂D is Lipschitz continuous. Let $n = 2, 3, q \in H^2(\Omega), q \ge 0, A \in H^3(\Omega)$ and $C(\Omega) \|A\|_{H^2(\Omega)} \le \frac{1}{2}$. Then, we have

$$\lim_{t \to \infty} \frac{\log |I_w^{(D)}(\tau; 0)|}{2\tau} = h_D(w), \lim_{\tau \to \infty} \frac{\log |I_w^{(N)}(\tau; 0)|}{2\tau} = h_D(w),$$

for any $\omega \in S^{n-1}$. Here, the constant $C(\Omega)$ depends only on Ω .

For a given $\omega \in S^{n-1}$, we furthermore assume the following condition $(D)_{\omega}$ for the Robin case.

 $(D)_{\omega}$: Suppose ∂D is C^2 and the set $T(\omega) := \{x \in \overline{D} \mid h_D(\omega) - x \cdot \omega = 0\}$ consists of only one point $x_0 \in \partial D$. Furthermore, we assume that in the neighborhood of x_0 the boundary ∂D can be expressed as $y = f(s), |s| < \epsilon, s \in \mathbb{R}^{n-1}$, and there exists $K_0, K_1 > 0, m_{\omega} \ge 2$ such that

$$K_0|s|^{m_w} \le f(s) \le K_1|s|^{m_w} \quad (|s| < \epsilon).$$

Theorem 2. (Robin case) Suppose $\lambda \neq 0, \lambda \geq 0$ and $\lambda \in C^1(\partial D)$. Let $n = 2, 3, q \in H^2(\Omega), q \geq 0, A \in H^3(\Omega)$ and $C(\Omega) ||A||_{H^2(\Omega)} \leq \frac{1}{2}$. We assume that the condition $(D)_{\omega}$ holds as $2 \leq m_w < 3$ for some $\omega \in S^{n-1}$. Then, we have

$$\lim_{\tau \to \infty} \frac{\log |I_{\omega}^{(R)}(\tau; 0)|}{2\tau} = h_D(\omega).$$

References

- [1] K. Kurata and R. Yamashita, Reconstruction of the defect by the enclosure method for inverse problems of the magnetic Schrödinger operator, (submitted).
- M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements, J. Inv. Ill-Posed Problems, 8 (2000), pp. 367-378.