HP Top
 
 
 
 


半田山・幾何・代数セミナー
Handayama Seminar on Geometry & Algebra


ここは岡山理科大学で行われている「半田山・幾何・代数セミナー」の情報ページです.



住所 / Address

〒700-0005 岡山県 岡山市北区 理大町1-1 岡山理科大学アクセス & キャンパスマップ

Okayama Univeristy of Science 1-1 Ridaicho, Okayama-shi 700-0005, JAPAN (Access & Campus Map)


世話人 / Organizers

阿部 拓 加瀬 遼一 川島 正行 黒木 慎太郎 柴田 大樹 坂内 真三
Hiraku Abe Ryoichi Kase Masayuki Kawashima Shintaro Kuroki Taiki Shibata Shinzo Bannai




第26回
Date 2024年11月1日(金) 16:45-18:15
Place A1号館2階 A0125教室
Speaker 三浦 敬 氏
Affiliation 宇部工業高等専門学校
 
Title 平面代数曲線のガロワ点理論とその周辺
Abstract ガロワ点が導入されておよそ30年の月日が経った. 当初は,非特異平面代数曲線の有理関数体の体拡大の構造を幾何的に調べることに主眼が置かれてきたが,その後,いろいろな幾何学的な現象との関連が考察され,広範囲に展開を続けている. さらには,準ガロワ点も導入され,ますます応用範囲が広がった.
本講演では,具体例の計算とともに,ガロワ点理論の展開の様子について概観したい. また,時間が許せば,K3曲面に対するガロワ点理論の最新の成果についても紹介したい.


第25回
Date 2024年7月5日(金) 16:00-17:30
Place A4号館4階 A0441教室
Speaker 下地 泰斗 氏
Affiliation 大阪大学 理学研究科 数学専攻
 
Title 非特異複素代数多様体の基本群として現れない有限生成群について〜次数付きリー代数の観点で見るセールの問題〜
Abstract 複素変数多項式の零点集合で定義される滑らかな図形(非特異複素代数多様体)の基本群は有限生成群であることが知られている. セールは逆問題として「有限生成群が与えられたとき,それを基本群に持つような非特異複素代数多様体は存在するか?」を考えた. これは「セールの問題」と呼ばれており,有限群に対する肯定的な結果(セール自身によって示された)のほか,考える図形を滑らかな射影代数多様体に制限したときの反例もいくつか知られている.
本講演ではベキゼロリー代数の「次数付け」を調べることで,セールの問題の反例が得られることを,リー群とリー代数の対応,群の表示を用いた具体例の計算を行いながら紹介する.


第24回
Date 2024年3月13日(水) 16:00-17:30
Place A4号館2階 A0422教室
Speaker 田中 真紀子 氏
Affiliation 東京理科大学 数理科学科
 
Title コンパクト対称空間の対蹠集合
Abstract 対称空間は各点で点対称が定義されている多様体で,対称空間の対蹠集合とは,その対称空間の部分集合であり,各点での点対称がその集合の上では恒等変換であるような離散集合である. コンパクト対称空間の対蹠集合は有限で,対蹠集合の濃度の最大値が存在し,2-number とよばれる. 2-number はコンパクト対称空間の位相的性質と関係することが知られている.
本講演では,コンパクト対称空間の対蹠集合に関するいくつかの先行研究を紹介し,コンパクト対称空間の極大対蹠集合の分類に関する田崎博之氏との共同研究の内容について述べる.


第23回
Date Thu. November 23rd, 2023, 13:30-14:30, 15:00-16:00
Place A0124 Room, 2F of A1 building
Speaker Tat Thang Nguyen 氏
Affiliation Institute of Mathematics, VAST
 
Title Global property of polynomial mappings on real plane
Abstract We consider a polynomial mapping $F$ from $\mathbb{R}^2$ to $\mathbb{R}^2$ and study its global property. This topic has connection with the so-called real Jacobian conjecture which states that any such local diffeomorphism $F$ is bijective. The conjecture has been disproved by Pinchuk with a counterexample. Though, the local diffeomorphism $F$ could bring some global property.
In this talk, we show that, under some conditions, there exists a natural number $N$ such that the image of $F^n$ is stable for all $n>N$.

Speaker Masaharu Ishikawa 氏
Affiliation Keio University
 
Title Circle actions on low-dimensional spheres
Abstract A 2-sphere embedded in the 4-sphere invariant under a circle action is called a branched twist spin. A branched twist spin is constructed from a 1-knot in the 3-sphere and a pair of coprime integers uniquely. Circle actions on the 4-sphere are studied by Montgomery, Yang, Fintushel, and Pao. There is a specific class of branched twist spins, called twist spun knots. There are several studies about these knots in the 2-knot theory.
In this talk, we introduce twist spun knots, branched twist spins, and our recent results concerning a classification of these knots. This is a joint work with Mizuki Fukuda in Tohoku University.


第22回
Date Fri. June 23rd, 2023, 16:45-18:15
Place Common seminar room, 7F of A2 building
Speaker Grigory Solomadin 氏
Affiliation Okayama University of Science
 
Title Independent GKM-graphs without nontrivial extensions
Abstract Orbit spaces of smooth manifolds with torus actions are well-known for their deep and fascinating relations with polytopes, fans, graphs and other combinatorial objects.
Assume that a $T^k$-action on a complex $n$-dimensional manifold has nonempty finite fixed point set, and that the weights of the tangential representation at any fixed point are $2$-independent (i.e. pairwise linearly independent). Then the subset of $0$- and $1$-dimensional orbits of the action forms an $n$-regular graph equipped with edge labels by weights from $Z^k$ (satisfying certain congruence conditions). Such a graph is called the GKM-graph of the manifold (originating from Goresky, Kottwitz and MacPherson's paper and introduced first in the work of Guillemin and Zara). A general principle is that the complexity of the combinatorics becomes higher with higher values of $n-k$, which can be seen as extension of the $T$-action on the manifold to the action of a greater torus. Another measure of complexity for the action is the $q$-independence property of the GKM-graph, which decreases for higher values of $q$ (this is a particular general position type condition). It was unknown if there exist non-extendible $n$-regular $k$-independent GKM-graphs for any values of $n,k$.
In the talk the example of a GKM-graph with such properties will be presented for any $n\geq k\geq 4$. The construction is based on the finite quotient for a periodic graph with respect to a translation subgroup in $\mathbb{R}^{k-1}$. Such a graph does not correspond to an equivariantly formal GKM-manifold, which follows from the acyclicity results of Ayzenberg and Masuda.


第21回
Date 2023年3月3日(金) 16:30-17:00, 17:30-18:00
Place C1号館 5階 C0151教室
Speaker 若尾亮太 氏
Affiliation 岡山理科大学 応用数学専攻
 
Title YD データを用いた低次元 pointed スーパー・ホップ代数の分類
Abstract 有限群のように有限次元ホップ代数の分類は盛んに行われている.一方で,有限次元スーパー・ホップ代数の分類は始まって間もない.本講演では,Yetter-Drinfeld データと呼ばれる,ボゾン化のある意味での逆操作を与える対象を考えることにより,スーパー・ホップ代数の研究が可能であることを説明する.

Speaker 杉谷礼 氏
Affiliation 芝浦工業大学 システム理工学専攻
 
Title 有限次元ホップ代数の余イデアル部分代数と歪原始元について
Abstract 一般に可換ホップ代数はアフィン群スキームと対応する.この対応から量子群などの可換とは限らないホップ代数は群の一般化とみなされ,群論と同様な研究が行われてきた.
さて,通常の群論において群の剰余類空間を考えることは基本的である.そこで M. Takeuchi らはアフィン群スキームの,アフィンとなる剰余類空間は,ある忠実平坦性の条件をもつ余イデアル部分代数に対応することを示した.これによりホップ代数を群の一般化とみなすとき,ある忠実平坦性の条件をもつ余イデアル部分代数はその群の剰余類空間とみなされる.これは特に,量子群の文脈からは量子等質空間として研究されており,またホップ代数が有限次元ならばその群の部分群に対応するものとみなされている.
本講演では,低次元ホップ代数の余イデアル部分代数の分類問題を扱う.これは上記の議論から,有限群の部分群を分類するような基本的な問題であると考えられる.また歪原始元と呼ばれる元の,簡単な性質や余イデアル部分代数の分類における位置付けについて説明する.


第20回
Date 2021年2月23日(火) 16:00-17:00
Place C3号館8階共同ゼミ室
Speaker 坂内真三 氏
Affiliation 茨城工業高等専門学校
 
Title 射影平面曲線の埋め込み位相の分類問題
Abstract Zariski が 1929 年に発見した例で見られる通り, 複素射影平面の中の射影平面曲線について, その既約成分の個数・次数・特異点や交叉などの組み合わせ論的情報が一致していたとしても, 埋め込み位相の型が異なりうることが知られている. この現象を理解するために, 同一の組み合わせ型を持つ曲線の埋め込み位相による分類の問題を考えることが重要である. 当初は位相幾何学由来の不変量が主に用いられていたが,その後,より代数的な手法が発見され, それを用いた研究が進められている.
本講演では,近年注目され始めた「分解曲線」とそれに付随する不変量について解説し, 新たに発見された例を紹介する.


第19回
Date 2019年12月30日(月) 16:00-17:30
Place A1号館 3階 A0133教室
Speaker 安福智明 氏
Affiliation 筑波大学 数理物質科学研究科
 
Title 組合せゲーム理論と表現論とのつながり
Abstract 組合せゲーム理論は Conway や Berlekamp らによって考案された理論であり,主に対戦ゲームの戦略を代数的に解析することを目的としている. その数学的構造の美しさやアルゴリズム的な興味深さから,近年数学分野の一分野として発展してきた.
本講演の前半では,組合せゲーム理論の入門的な内容について話す.また佐藤幹夫氏は,ウェルターゲームの操作がヤング図形のフックの引き抜きに対応することに着目し, 組合せゲーム理論と表現論との間に関わりがあることを示唆した. つい最近,入江佑樹氏により実際に対称群の表現論との関わりがあることが示された.後半ではその概略について紹介する. さらに,時間に余裕があれば組合せゲーム理論に関する最新の研究内容についても言及したい.


第18回
Date 2019年12月19日(木) 16:45-18:15
Place A1号館 2階 A0122教室
Speaker 高橋祐太 氏
Affiliation 筑波大学 数理物質科学研究科
   
Title スーパー代数群の商の幾何的構成
Abstract よく知られているように体上の代数群とその閉部分群に対し,商となるスキームがスキームの圏において存在する. ここで,この結果がより一般的にスーパー対称性のもとで成り立つかという問題が考えられる. この問題が我々の興味を引いたのは Brundan の示したスーパー代数群の表現に関する結果による. Brundan はスーパー代数群とその閉スーパー部分群に対して,商の存在を含むいくつかの性質をリストアップし仮定した上でスーパー代数群の表現に関する一般的な結果を示した.
講演ではスーパー代数群の商を構造層を明示して構成する方法を紹介する. その構成により Brundan がリストアップした性質が示され,一般のスーパー代数群に対してBrundanの結果が適用可能となった.


第17回
Date Thu. Dec. 12th, 2019, 16:45-18:15
Place A0122 Room, 2F of Building A1
Speaker Tan Nhat Tran 氏
Affiliation Department of Mathematics, Hokkaido University
   
Title Quasi-polynomials in arrangement and Ehrhart theories
Abstract We are going to investigate a typical problem in enumerative combinatorics: counting the sizes of the sets depending upon a positive integer $q$. The result often is polynomials (e.g., chromatic polynomial of a graph), and sometimes quasi-polynomials. Generally speaking, a quasi-polynomial is a refinement of polynomials, of which the coefficients may not come from a ring but instead are periodic functions with integral period. One of the most classical examples is the Ehrhart quasi-polynomial that counts the number of integral points in the $q$-fold dilation of a rational polytope. In the arrangement theory, a quasi-polynomial appears when we count the size of the complement of an integral hyperplane arrangement modulo $q$ - the characteristic quasi-polynomial due to Kamiya-Takemura-Terao.
In the first part, we show that the characteristic quasi-polynomial encodes a number of combinatorial and topological information of many types of arrangements. In the second part, we show a link between the characteristic and Ehrhart quasi-polynomials in connection with root systems and Eulerian polynomials.
The first part is based on a joint work with Yoshinaga (Hokkaido), the second part is based on a joint work with Ashraf (Western Ontario) and Yoshinaga.


第16回
Date 2019年12月5日(木) 16:45-18:15
Place A1号館 2階 A0122教室
Speaker 藤田遼 氏
Affiliation 京都大学 理学研究科
   
Title ADE 型アフィン量子群の基本表現の間の $R$ 行列の特異性について
Abstract アフィン量子群の有限次元テンソル積表現の間の絡作用素として実現される $R$ 行列は、スペクトル変数付き Yang-Baxter 方程式を満たす行列値有理関数とみなせる。 その特異性はテンソル積表現の可約性を強く反映し、アフィン量子群の表現圏のモノイダル構造に関する本質的情報を含んでいる。
講演では、非捩 ADE 型アフィン量子群の基本表現に話を限定して、それらの間の $R$ 行列の分母を量子 Cartan 行列を用いて統一的に表す公式を紹介し、 さらにそれが対応する Dynkin 箙の表現論や次数付き箙多様体の構造と密接に関係していることを説明する。 時間が許せば、応用として、Kang-柏原-Kim が導入したアフィン量子群と箙 Hecke 代数の表現圏を結びつける Schur-Weyl 双対性関手の一般化について、そのひとつの幾何学的解釈が得られることにも言及したい。


第15回
Date Wed. Oct. 9th, 2019, 16:45-18:15
Place A0132 Room, 3F of Building A1
Speaker Prof. Piotr Pragacz
Affiliation Institute of Mathematics, Polish Academy of Sciences
   
Title Order of tangency between manifolds
Abstract We study the order of tangency between two manifolds of same dimension and give that notion three quite different interpretations: by Taylor series, by a mini-max procedure and by Grassmannians. Related aspects of the order of tangency, e.g., regular separation exponents and Lojasiewicz exponents are also discussed.
This is a joint work with Wojciech Domitrz and Piotr Mormul.


第14回
Date 2019年7月22日(月) 17:00-18:30
Place A1号館 3階 A0133教室
Speaker 渡邊陽介 氏
Affiliation ZOZOテクノロジーズ研究員 / 九州大学客員研究員
   
Title SNSのグラフ構造に置けるネットワーク分析とレコメンドに置ける実データの機械学習の応用例
Abstract 本講演では2つのパートに分けて話す。主には、SNSの実データにグラフ構造を与える手法とそのグラフの基本的なトポロジーを使い中間点を導き出す例を紹介する。 紹介するグラフは曲面上のトポロジーを用いて解釈する事ができ中間点を導き出す手法でその解釈を簡単にではあるが使う。 又、時間に余裕があれば現在九州大学IMI研究所と取り組んでいる機械学習を使ったレコメンド手法に関しても話す。


第13回
Date 2019年6月17日(月) 17:00-18:30 / Mon. June 17th, 2019, 17:00-18:30
Place A1号館 2階 A0125教室 / A1025 Room, 2F of Building A1
Speaker Prof. Jae-Hoon Kwon
Affiliation Department of Mathematical Sciences, Seoul National University
   
Title Crystals and Schur $P$-positive expansions
Abstract In this talk, we give a new characterization of Littlewood-Richardson-Stembridge tableaux for Schur $P$-functions by using the theory of $q(n)$-crystals. We also give alternate proofs of the Schur $P$-expansion of a skew Schur function due to Ardila and Serrano, and the Schur expansion of a Schur $P$-function due to Stembridge using the associated crystal structures.
This is a joint work with Seung-Il Choi.


第12回
Date 2019年6月10日(月) 17:00-18:30
Place A1号館 2階 A0123教室
Speaker 平岡裕章 氏
Affiliation 京都大学 高等研究院
   
Title パーシステントホモロジー:理論と応用
Abstract この講演ではパーシステントホモロジーに関わる数学および応用について解説する. ここでパーシステントホモロジーとは,理論および応用の両側面で現在活発に研究が進められている数学概念であり, 位相的データ解析(Topological Data Analysis, TDA)と呼ばれる分野の代表的な手法として知られている. パーシステントホモロジーは,数学的には位相空間のフィルトレーションに対する次数付き加群としてのホモロジーで定式化されるが, クイバー(Quiver)の表現論を用いた一般化をはじめ,確率論,統計・機械学習,逆問題,最適輸送などへ急速に展開している. またパーシステントホモロジーは諸科学の問題へも実際に応用されており,その適用範囲は材料科学,生命科学,脳科学,ソーシャルネットワーク,医療,金融など多岐にわたる.
ここではパーシステントホモロジーの歴史的経緯や上に挙げた様々な数学的な広がりを解説する. また,材料科学を中心に,実際にパーシステントホモロジーが現場で使われている例も紹介し,トポロジーに基礎をおく新たな応用数学手法としての魅力も伝えたい.


第11回
Date 2018年10月17日(水) 16:45-18:15
Place A1号館 2階 A0125教室
Speaker 小野舞子 氏
Affiliation 岡山県立大学
   
Title 微分次数付き加群の持ち上げについて
Abstract 本講演では,Auslander-Ding-Solberg による可換 Noether 局所環上の有限生成加群の持ち上げ問題を 可換微分次数付き (DG) 代数上の微分次数付き (DG) 加群へ拡張した問題の研究を紹介する。 具体的には,「DG 代数とその 1変数 divided power DG 代数拡大 $B$ に対して, DG $B$ 加群がいつ係数拡大で持ち上がる DG 加群に同型であるか?」を考えた。 この問題を解く鍵となったのは,Tateにより導入された作用素からヒントを得て定義した $j$-作用素である。 $j$-作用素を用いて,持ち上げの障害類を構成した。 ある弱い条件の下で,DG 加群の持ち上げ可能性をその障害類の消滅性により特徴づけた。 また持ち上げの一意性に対する十分条件も得られた。
本講演の内容は岡山大学の吉野雄二氏との共同研究に基づく。 


第10回
Date 2018年7月23日(月) 16:45-18:15 / Mon. July 23rd, 2018, 16:45-18:15
Place A1号館 3階 A0132教室 / A0132 Room, 3F of Building A1
Speaker Prof. Arturo Pianzola
Affiliation Department of Mathematical and Statistical Sciences, University of Alberta
   
Title Galois cohomology (an introduction and some applications to Quantum Groups)
Abstract Non-abelian Galois cohomology is, from Grothendieck's point of view, the simplest example of a theory that can "measure" mathematical objects (projective curves, Lie algebras, ...) that are locally isomorphic. What is curious is that the base topological space consists of just one point! (this space therefore admits no non-trivial open coverings. That said, the theory is far from trivial: One needs to understand the meaning of "local").
The talk will present an introduction, with plenty of examples, to non-abelian Galois cohomology. Towards the end we will give some new applications to the classification of quantum groups.


第9回
Date 2018年1月16日(火) 16:45-18:15
Place A1号館 2階 A0126教室
Speaker 阿部拓 氏
Affiliation 大阪市立大学 数学研究所
   
Title 正則ヘッセンバーグ多様体の幾何学
Abstract ヘッセンバーグ多様体は旗多様体の部分多様体であり,幾何・トポロジー・組み合わせ論・表現論といった様々な側面からのアプローチが可能な対象です. リー環の正則元から定まるヘッセンバーグ多様体を観察してみると,その幾何やトポロジーは正則元の取り方によって大きく変わるようにも見えますが,実は共通する幾何学的な性質も持っています.
この講演では,正則ヘッセンバーグ多様体の族の性質を観察することで,何が共通する性質なのかを説明したいと思います. また,応用として,旗多様体のホモロジーにおいて正則ヘッセンバーグ多様体が定めるサイクルが正則元の取り方によらないことを見たいと思います.
この研究は,復旦大学の曽昊智さんと東京工業大学の藤田直樹さんとの共同研究です.


第8回
Date 201年1月11日(木) 16:45-18:15
Place A1号館 2階 A0126教室
Speaker 金久保有輝 氏
Affiliation 上智大学 理学部
   
Title Cluster algebra structures of the coordinate rings and crystal bases
Abstract The coordinate rings of many varieties relevant to reductive algebraic groups have special generators so-called cluster variables. A commutative algebra generated by cluster variables is called a cluster algebra. When $G$ is a classical group over the complex field, it is decomposed into cells $G^{u,v}$ parametrized by two Weyl group elements $u$, $v$. It is known that the coordinate ring of $G^{u,v}$ has a cluster algebra structure.


第7回
Date 2017年12月1日(月) 17:00-18:00
Place A1号館 3階 A0131教室
Speaker 佐伯修 氏
Affiliation 九州大学 マス・フォア・インダストリ研究所
   
Title Simplifying indefinite fibrations on 4-manifolds
Abstract 4 次元多様体から 2 次元球面への滑らかな写像で、 特異点として不定値折り目特異点とレフシェッツ型特異点しか持たないものは、特異レフシェッツ束と呼ばれる。 本講演では、その特異値集合を簡略化するための具体的アルゴリズムを、特異点論の観点から与え、 応用として、どんな 4 次元多様体も単純な 3 分割 (simplified trisection) を持つことを示す。
本講演の内容は R. I. Baykur 氏との共同研究に基づく。


第6回
Date 2017年8月7日(月) 16:54-18:15
Place A1号館 2階 A0126教室
Speaker 武部尚志 氏
Affiliation Faculity of Mathematics, National Research University - Higher School of Economics
   
Title 可解格子模型と Baxter の $Q$ 作用素
Abstract 統計力学における可解格子模型とは何か、「解ける」とはどういう意味か、から始めて、 二つの解き方(代数的 Bethe Ansatz と Baxter の $Q$ 作用素)について解説する。 時間があれば、自分の研究している楕円型 $R$ 行列で定義される格子模型について触れるかもしれないが、 基本的にはもっと簡単な模型を例に使って説明する。


第5回
Date 2017年7月28日(金) 16:45-18:15
Place A1号館 2階 A0126教室
Speaker 斎藤睦 氏
Affiliation 北海道大学 理学部
   
Title $\mathrm{PGL}(V)$ の或るコンパクト化について
Abstract 射影空間 $\mathrm{P}(V)$ への作用を有するように $\mathrm{PGL}(V)$ をナイーヴにコンパクト化する。 通常のコンパクト化では、幾何的に良いものを得るため、良い極限だけ考えるのであるが、この講演では全ての極限を考える。 幾つかの性質を述べた後、通常のコンパクト化との関係にも言及する。


第4回
Date 2017年7月19日(水) 16:45-18:15 / Wed. July 19th, 2017, 16:45-18:15
Place A1号館 2階 A0126教室 / A0126 Room, 2F of Building A1
Speaker Prof. Yuan-Pin Lee
Affiliation Department of Mathematics, University of Utah
   
Title Introduction to quantum K-theory and applications
Abstract In the first part of the talk, the basics of quantum K-theory will be explained and comparisons between quantum cohomology and quantum K-theory will be made. The second part of the talk will mainly be on quantum K-theory on flag manifolds and its relations to finite difference Toda Lattices.
References:
1. Lee, Y.-P., Quantum K-theory. I. Foundations. Duke Math. J. 121 (2004), no. 3,389-424.
2. Givental, Alexander; Lee, Yuan-Pin, Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups. Invent. Math. 151 (2003), no. 1, 193-219.
3. Givental, Alexander, On the WDVV equation in quantum K-theory. Michigan Math. J. 48 (2000), 295-304.


第3回
Date 2017年4月19日(水) 16:45-18:15 / Wed. April 19th, 2017, 16:45-18:15
Place A1号館 2階 A0126教室 / A0126 Room, 2F of Building A1
Speaker Prof. Dang Hiep
Affiliation Mathematics Division, National Center for Theoretical Sciences
   
Title Quantum Schubert Calculus on Lagrangian Grassmannians
Abstract Let $LG$ be a complex Lagrangian Grassmannian parametrizing Lagrangian (i.e. maximal isotropic) subspaces in a complex symplectic vector space of dimension $2n$. This seminar talk is mainly devoted to the geometry of $LG$. More concretely, I will recall the definition of Schubert classes on $LG$ and some basic results which are similar to the classical Pieri and Giambelli rules. A presentation of the cohomology ring of $LG$ will be discussed.
Finally, I will discuss recent results related to quantum cohomology of $LG$.


第2回
Date 2017年2月22日(水) 16:30-18:00
Place A2号館 7階 大ゼミ室
Speaker 青木美穂 氏
Affiliation 島根大学 総合理工学部
   
Title Laxton 群の構造と 2 次体の整数論について
Abstract 整数 $T,N$ に対し特性多項式 $f(X) = X^2 - TX + N$ で定義される 2次の線形回帰数列全体を考える. 講演ではまず Laxton によって定義された数列の同値類とその全体に入る群構造について説明をする. また,この群構造が 2次体の整数論を綺麗に記述していることを説明する.
さらに,酒井悠帆さん(島根大学大学院博士後期課程1年生)との共同研究で得られた素数に依存する同値類全体と Laxton 群との関係に関する結果について述べる.


第1回
Date 2016年12月8日(木) 16:30-18:00
Place A2号館 7階 大ゼミ室
   
Speaker 大川領 氏
Affiliation 京都大学 数理解析研究所
 
Title Wall-crossing between stable and co-stable ADHM data
Abstract 射影平面上の枠付き連接層のモジュライについて行った研究を紹介する. 特にモジュライ上の積分により定義される Nekrasov 分配関数について最近得られた結果を説明する. モジュライの構成要素に対する安定性条件を変えることにより、双有理変換が得られる. これを用いて Nekrasov 分配関数の関数等式を示した. 具体的には望月拓郎氏により開発された壁越え公式の方法を用いる. この証明方法について概略を説明する. またこの方法を $A_1$ 型特異点解消上の枠付き連接層のモジュライに適用することで Ito-Maruyoshi-Okuda の予想した McKay 対応的な関数等式が得られる. 時間があればこれについても証明の概略を紹介したい.